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ADT: Priority Queue 

• Each item has a “priority” 

– The next or best item is the one with the lowest priority 

– So “priority 1” should come before “priority 4” 

– Simply by convention, could also do maximum priority 
 

 

 

• Operations:  

– insert 

– deleteMin 

 

 

• deleteMin  returns and deletes item with lowest priority 

– Can resolve ties arbitrarily 
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Array Representation of a Binary Heap 
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Pseudocode: insert 

This pseudocode uses ints.  In real use, 

you will have data nodes with priorities. 

void insert(int val) { 

 if(size==arr.length-1) 

    resize();   

  size++; 

  i=percolateUp(size,val); 

  arr[i] = val; 

} 

int percolateUp(int hole,  
                int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 
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Pseudocode: deleteMin 

int deleteMin() { 

  if(isEmpty()) throw… 

  ans = arr[1]; 

  hole = percolateDown 

          (1,arr[size]); 

  arr[hole] = arr[size]; 

  size--; 

  return ans; 

} 

int percolateDown(int hole, 
                  int val) { 
 while(2*hole <= size) { 
  left  = 2*hole;  
  right = left + 1; 
  if(arr[left] < arr[right] 
     || right > size) 
    target = left; 
  else 
    target = right; 
  if(arr[target] < val) { 
    arr[hole] = arr[target]; 
    hole = target; 
  } else 
      break; 
 } 
 return hole; 
} 
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This pseudocode uses ints.  In real use, 

you will have data nodes with priorities. 



Example 

1. insert: 105, 69, 43, 32, 16, 4, 2 

2. deleteMin 
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Other Operations 

• decreaseKey:  

– given pointer to object in priority queue  

(e.g., its array index), lower its priority to p 

– Change priority and percolate up 

• increaseKey:  

– given pointer to object in priority queue  

(e.g., its array index), raise its priority to p 

– Change priority and percolate down 

• remove:  

– given pointer to object in priority queue  

(e.g., its array index), remove it from the queue 

– decreaseKey to p = -, then deleteMin 
 

 

 

What is the runtime? 

O(log n) 



Build Heap 

• Suppose you have n items to put in a new priority queue 

– Sequence of n inserts, O(n log n) 

 

• Can we do better? 

– Above is only choice if ADT does not provide buildHeap 

 

• Important issue in ADT design: how many specialized operations 

– Tradeoff: Convenience, Efficiency, Simplicity 

 

• In this case, we are motivated by efficiency 

– We can buildHeap using O(n) algorithm called Floyd’s Method 

 

 

 

 



Floyd’s Method 

Recall our general strategy for working with the heap: 

• Preserve structure property 

• Break and restore heap property 

 

 

1. Use our n items to make a complete tree 

– Put them in array indices 1,…,n 

 

2. Treat it as a heap and fix the heap-order property 

– Exactly how we do this is where we gain efficiency 



Floyd’s Method 

Bottom-up 

– Leaves are already in heap order 

– Work up toward the root one level at a time 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Example 

• In tree form for readability 

 

– Red for nodes which are 

not less than descendants  

 

– Notice no leaves are red 

 

– Check/fix each non-leaf 

bottom-up (6 steps here) 
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Example 
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Step 1 

• Happens to already be less than children 

 



Example 
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Step 2 

• 10 percolates down (and notice that 1 moves up) 
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Example 

Step 3 

• Another nothing-to-do step 
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Example 

Step 4 

• Percolate down as necessary (first 2, then 6) 
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Example 

Step 5 
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• Percolate down as necessary (the 1 again) 

 



Example 

Step 6 
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• Percolate down as necessary (first 1, then 3, then 4) 

 



But is it right? 

• “Seems to work” 

– First we will prove it restores the heap property (correctness) 

– Then we will  prove its running time (efficiency) 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 

• True initially: If j > size/2, then j is  a leaf 

– Otherwise its left child would be at position > size 

• True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 

for any descendants 

So after the loop finishes, all nodes are less than their children 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 

• size/2 loop iterations 

• Each iteration does one percolateDown, each is O(log n) 

 

This is correct, but there is a “tighter” analysis of the algorithm… 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 

• size/2 total loop iterations: O(n) 

• 1/2 the loop iterations percolate at most 1 step 

• 1/4 the loop iterations percolate at most 2 steps 

• 1/8 the loop iterations percolate at most 3 steps 

• … 

• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss) 

– So at most 2(size/2) total percolate steps: O(n)  

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Lessons from buildHeap 

• Without  buildHeap, our ADT already allows clients to 

implement their own in worst-case O(n log n) 

– Worst case is inserting lower priority values later 
 

• By providing a specialized operation internal to the data structure 

(with access to the internal data), we can do O(n) worst case 

– Intuition: Most data is near a leaf, so better to percolate down 
 

• Can analyze this algorithm for: 

– Correctness:  

• Non-trivial inductive proof using loop invariant 

– Efficiency: 

• First analysis easily proved it was O(n log n) 

• A “tighter” analysis shows same algorithm is O(n) 

 

 



What we are Skipping (see text if curious) 

• d-heaps: have d children instead of 2 

– Makes heaps shallower, useful for heaps too big for memory 

– The same issue arises for balanced binary search trees and we 

will study “B-Trees” 

 

• merge: given two priority queues, make one priority queue 

– How might you merge binary heaps: 

• If one heap is much smaller than the other? 

• If both are about the same size? 

– Different pointer-based data structures for priority queues support 
logarithmic time merge operation (impossible with binary heaps) 

 


