
CSE332: Data Abstractions

Lecture 5: Heaps

James Fogarty

Winter 2012

ADT: Priority Queue

• Each item has a “priority”

– The next or best item is the one with the lowest priority

– So “priority 1” should come before “priority 4”

– Simply by convention, could also do maximum priority

• Operations:

– insert

– deleteMin

• deleteMin returns and deletes item with lowest priority

– Can resolve ties arbitrarily

insert deleteMin

 6 2

 15 23

 12 18

45 3 7

Array Representation of a Binary Heap

G E D

C B

A

J K H I

F

L

From node i:

left child:

right child:

parent:

wasting index 0 is

convenient for the math

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Array implementation:

i*2

i*2+1

i/2

Pseudocode: insert

This pseudocode uses ints. In real use,

you will have data nodes with priorities.

void insert(int val) {

 if(size==arr.length-1)

 resize();

 size++;

 i=percolateUp(size,val);

 arr[i] = val;

}

int percolateUp(int hole,
 int val) {
 while(hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pseudocode: deleteMin

int deleteMin() {

 if(isEmpty()) throw…

 ans = arr[1];

 hole = percolateDown

 (1,arr[size]);

 arr[hole] = arr[size];

 size--;

 return ans;

}

int percolateDown(int hole,
 int val) {
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(arr[left] < arr[right]
 || right > size)
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50

0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,

you will have data nodes with priorities.

Example

1. insert: 105, 69, 43, 32, 16, 4, 2

2. deleteMin

0 1 2 3 4 5 6 7

x x

x x

x

x x

Other Operations

• decreaseKey:

– given pointer to object in priority queue

(e.g., its array index), lower its priority to p

– Change priority and percolate up

• increaseKey:

– given pointer to object in priority queue

(e.g., its array index), raise its priority to p

– Change priority and percolate down

• remove:

– given pointer to object in priority queue

(e.g., its array index), remove it from the queue

– decreaseKey to p = -, then deleteMin

What is the runtime?

O(log n)

Build Heap

• Suppose you have n items to put in a new priority queue

– Sequence of n inserts, O(n log n)

• Can we do better?

– Above is only choice if ADT does not provide buildHeap

• Important issue in ADT design: how many specialized operations

– Tradeoff: Convenience, Efficiency, Simplicity

• In this case, we are motivated by efficiency

– We can buildHeap using O(n) algorithm called Floyd’s Method

Floyd’s Method

Recall our general strategy for working with the heap:

• Preserve structure property

• Break and restore heap property

1. Use our n items to make a complete tree

– Put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property

– Exactly how we do this is where we gain efficiency

Floyd’s Method

Bottom-up

– Leaves are already in heap order

– Work up toward the root one level at a time

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Example

• In tree form for readability

– Red for nodes which are

not less than descendants

– Notice no leaves are red

– Check/fix each non-leaf

bottom-up (6 steps here)

6 7 1 8

9 2 10 3

11 5

12

4

Example

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

• Happens to already be less than children

Example

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

• 10 percolates down (and notice that 1 moves up)

6 7 10 8

9 2 1 3

11 5

12

4

Example

Step 3

• Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Step 4

• Percolate down as necessary (first 2, then 6)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

• Percolate down as necessary (the 1 again)

Example

Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

• Percolate down as necessary (first 1, then 3, then 4)

But is it right?

• “Seems to work”

– First we will prove it restores the heap property (correctness)

– Then we will prove its running time (efficiency)

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children

• True initially: If j > size/2, then j is a leaf

– Otherwise its left child would be at position > size

• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property

for any descendants

So after the loop finishes, all nodes are less than their children

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size

• size/2 loop iterations

• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a “tighter” analysis of the algorithm…

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Efficiency

Better argument: buildHeap is O(n) where n is size

• size/2 total loop iterations: O(n)

• 1/2 the loop iterations percolate at most 1 step

• 1/4 the loop iterations percolate at most 2 steps

• 1/8 the loop iterations percolate at most 3 steps

• …

• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)

– So at most 2(size/2) total percolate steps: O(n)

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Lessons from buildHeap

• Without buildHeap, our ADT already allows clients to

implement their own in worst-case O(n log n)

– Worst case is inserting lower priority values later

• By providing a specialized operation internal to the data structure

(with access to the internal data), we can do O(n) worst case

– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:

– Correctness:

• Non-trivial inductive proof using loop invariant

– Efficiency:

• First analysis easily proved it was O(n log n)

• A “tighter” analysis shows same algorithm is O(n)

What we are Skipping (see text if curious)

• d-heaps: have d children instead of 2

– Makes heaps shallower, useful for heaps too big for memory

– The same issue arises for balanced binary search trees and we

will study “B-Trees”

• merge: given two priority queues, make one priority queue

– How might you merge binary heaps:

• If one heap is much smaller than the other?

• If both are about the same size?

– Different pointer-based data structures for priority queues support
logarithmic time merge operation (impossible with binary heaps)

