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Reminders and Questions 

• Homework 2 Due Now 

 

• Homework 3 Posted 

– Due Friday 

 

• Project 2 Posted 

– Group Emails Due Wednesday 

– Milestone Due Next Wednesday 



The Dictionary (a.k.a. Map) ADT 

• Data: 

– Set of (key, value) pairs 

– keys must be comparable 

 

• Operations: 

– insert(key,value) 

– find(key) 

– delete(key) 

– … 

• jfogarty 

James 
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• trobison 

Tyler 
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 … 

 

• hchwei90 

Haochen 

 Wei 

 … 

 

• jabrah 

Jenny 

Abrahamson 

 … 

 

insert(jfogarty, ….) 

find(trobison) 

Tyler, Robison, … 

Probably the single most common ADT in everyday programs 

 

We will tend to emphasize the keys, don’t forget about the stored values 



Simple Implementations 

For dictionary with n key/value pairs 

 

      insert   find    delete 

• Unsorted linked-list 

 

• Unsorted array 

 

• Sorted linked list 

 

• Sorted array 

 

O(1)          O(n)            O(n) 

 

O(1)          O(n)            O(n) 

 

O(n)          O(n)            O(n) 

 

O(n)          O(log n)     O(n) 

  |    | 

log n + n  log n + n 



Binary Search 
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Binary Search Tree 
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Our goal is the performance of binary search in a tree representation 



Binary Search Tree 
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• Structure Property (“binary”) 

– each node has  2 children 

 

• Order Property 

– all keys in left subtree are  

smaller than node’s key 

– all keys in right subtree are  

larger than node’s key 

 



Are these BSTs? 
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Are these BSTs? 
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Insert and Find in BST 

20 9 2 

15 5 
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30 7 17 

insert(13) 

insert(8) 

insert(31) 

find(17) 

find(11) 

Insertion happens at leaves 
 

Find walks down tree 

10 

8 31 

13 



Deletion – The Leaf Case 
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Deletion – The One Child Case 
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delete(15) 



Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we use to replace the 5? 
 

– successor    from right subtree: findMin(node.right) 

– predecessor   from left subtree:   findMax(node.left) 

 

 

 

10 

delete(5) 



The Need for a Balanced BST 

Observation 
 

• BST is overall great 

– The shallower, the better! 
 

• But worst case height is O(n) 

– Caused by simple cases, such as pre-sorted data 

 

Solution 
 

Require a Balance Condition that will: 

1. ensure depth is always O(log n)    – strong enough! 

2. be easy to maintain               – not too strong! 



Potential Balance Conditions 

1. Left and right subtrees of the  

root have equal number of nodes 

 

 

 

2. Left and right subtrees of the  

root have equal height 

Too weak! 

Height mismatch example: 

Too weak! 

Double chain example: 



Potential Balance Conditions 

3. Left and right subtrees of every  

node have equal number of nodes 

 

 

 

4. Left and right subtrees of every  

node have equal height 

Too strong! 

Only perfect trees (2n – 1 nodes) 

Too strong! 

Only perfect trees (2n – 1 nodes) 



The AVL Balance Condition 

Left and right subtrees of every node 

have heights differing by at most 1 

 

Definition:  balance(node) = height(node.left) – height(node.right) 

 

AVL property:   for every node x,   –1  balance(x)  1    

 

• Ensures small depth 

– Can prove by showing an AVL tree of  

height h must have nodes exponential in h 

 

• Efficient to maintain 

– Using single and double rotations 

… 

3 

value 

height 

children 

10  key  



Calculating Height 

What is the height of a tree with root  r? 

int treeHeight(Node root) { 

  if(root == null) 

    return -1; 

  return 1 + max(treeHeight(root.left), 

                 treeHeight(root.right)); 

} 

Running time for tree with n nodes:  

 O(n) – single pass over tree 
 

Very important detail of definition: 

 height of a null tree is -1, height of tree with a single node is 0 



An AVL Tree? 
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This is the minimum  

AVL tree of height 4 

 

Let S(h) be the  

minimum nodes in height h 

 

 

S(h) = S(h-1) + S(h-2) + 1 

 

S(-1) = 0  S(2) = 4 

S(0) = 1  S(3) = 7 

S(1) = 2  S(4) = 12 

 

Solution of Recurrence: S(h)  1.62h 
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AVL Tree Operations 

• AVL find:  

– Same as BST find 

 

• AVL insert:  

– Same as BST insert 

• then check balance and potentially fix the AVL tree 

• four different imbalance cases 

 

• AVL delete:  

– As with insert, do the deletion and then handle imbalance 

 



Example 

 

 

Insert(6) 

Insert(3) 

Insert(1) 

 

 

Third insertion violates balance 

 

What is the only way to fix this? 
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Single Rotation 

• Single rotation: The basic operation we use to rebalance 

– Move child of unbalanced node into parent position 

– Parent becomes a “other” child 

– Other subtrees move in the only way allowed by the BST 
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Insert and Detect Potential Imbalance 

1. Insert the new node (at a leaf, as in a BST) 

2. For each node on the path from the new leaf to the root 

 the insertion may, or may not, have changed the node’s height 

3. After recursive insertion in a subtree 

 detect height imbalance 

 perform a rotation to restore balance at that node 
 

All the action is in defining the correct rotations to restore balance 
 

Fact that an implementation can ignore: 

– There must be a deepest element that is imbalanced 

– After rebalancing this deepest node, every node is balanced 

– So at most one node needs to be rebalanced 



Single Rotation Example: Insert(16) 
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Single Rotation Example: Insert(16) 
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Single Rotation Example: Insert(16) 
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Left-Left Case 

• Node imbalanced due to insertion in left-left grandchild 

– This is 1 of 4 possible imbalance cases 
 

• First we did the insertion, which made a  imbalanced 
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Left-Left Case 

 

• So we rotate at a, using BST facts: X < b < Y < a < Z 

• A single rotation restores balance at the node 

– Is same height as before insertion, so ancestors now balanced 
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Right-Right Case 

• Mirror image to left-left case, so you rotate the other way 

– Exact same concept, but need different code 
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The Other Two Cases 

Single rotations not enough for insertions left-right or right-left subtree  

 

Simple example:  insert(1), insert(6), insert(3) 

 

First wrong idea:  single rotation as before 
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The Other Two Cases 

Single rotations not enough for insertions left-right or right-left subtree  

 

Simple example:  insert(1), insert(6), insert(3) 

 

Second wrong idea:  single rotation on child 
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Double Rotation 

• First attempt at rotation violated the BST property 

• Second attempt at rotation did not fix balance 

• But if we do both, it works!  
 

Double rotation:  

1. Rotate problematic child and grandchild 

2. Then rotate between self and new child 
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Intuition: 3 must become root 



Right-Left Case 
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Right-Left Case 

• Height of the subtree after rebalancing is the same as before insert 

– So no ancestor in the tree will need rebalancing 

• Does not have to be implemented as two rotations; can just do: 
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Easier to remember than you may think: 

 Move c to grandparent’s position 

 Put a, b, X, U, V, and Z in the only legal position for a BST 



Left-Right Case 

• Mirror image of right-left 

– No new concepts, just additional code to write 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Double Rotation Example: Insert(5) 
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Summarizing Insert 

• Insert as in a BST 
 

• Check back up path for imbalance, which will be 1 of 4 cases: 

– node’s left-left grandchild is too tall 

– node’s left-right grandchild is too tall 

– node’s right-left grandchild is too tall 

– node’s right-right grandchild is too tall 
 

• Only one case can occur, because tree was balanced before insert 
 

• After the single or double rotation, the smallest-unbalanced  

subtree now has the same height as before the insertion 

– So all ancestors are now balanced 



Efficiency 

 

Worst-case complexity of find: O(log n) 

 

Worst-case complexity of insert: O(log n) 

– Rotation is O(1) and there’s an O(log n) path to root 

– Same complexity even without “one-rotation-is-enough” fact 

 

Worst-case complexity of buildTree: O(n log n) 

 

 



Delete 

We will not cover delete 

– Multiple snow days, something has to give 
 

Do the delete as in a BST, then balance path up from deleted node 

– Which may be predecessor or successor 
 

Single and double rotate based on height imbalance 

– You are coming up the shorter subtree 

– But need to pull up the taller subtree 
 

Rotation reduces height of the tree 

– So you need to check all the way to the root 
 

delete is also O(log n) 

 

 


