CSE332: Data Abstractions
Lecture 6: Dictionary, BST, AVL Tree

James Fogarty
Winter 2012

Reminders and Questions

- Homework 2 Due Now
- Homework 3 Posted
- Due Friday
- Project 2 Posted
- Group Emails Due Wednesday
- Milestone Due Next Wednesday

The Dictionary (a.k.a. Map) ADT

- Data:
- Set of (key, value) pairs
- keys must be comparable
- Operations:

 insert(jfogarty,)

Probably the single most common ADT in everyday programs
We will tend to emphasize the keys, don't forget about the stored values

Simple Implementations

For dictionary with n key/value pairs

	insert	find	delete
- Unsorted linked-list	$O(1)$	$O(n)$	$O(n)$

- Unsorted array
$O(1) \quad O(n) \quad O(n)$
- Sorted linked list
$O(n) \quad O(n) \quad O(n)$
- Sorted array

Binary Search
Target 4

Binary Search Tree

1	3	4	5	7	8	9	10

Our goal is the performance of binary search in a tree representation

Binary Search Tree

- Structure Property ("binary")
- each node has ≤ 2 children
- Order Property
- all keys in left subtree are smaller than node's key
- all keys in right subtree are larger than node's key

Are these BSTs?

Are these BSTs?

Insert and Find in BST

$$
\begin{aligned}
& \text { insert(13) } \\
& \text { insert(8) } \\
& \text { insert(31) } \\
& \text { find(17) } \\
& \text { find(11) }
\end{aligned}
$$

Insertion happens at leaves
Find walks down tree

Deletion - The Leaf Case

Deletion - The One Child Case

Deletion - The Two Child Case

What can we use to replace the 5 ?

- successor from right subtree: findMin (node.right)
- predecessor from left subtree: findMax (node.left)

The Need for a Balanced BST

Observation

- BST is overall great
- The shallower, the better!
- But worst case height is $O(n)$
- Caused by simple cases, such as pre-sorted data

Solution
Require a Balance Condition that will:

1. ensure depth is always $O(\log n) \quad-$ strong enough!
2. be easy to maintain - not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

Too weak!
 Height mismatch example:

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
Too strong!
Only perfect trees $\left(2^{n}-1\right.$ nodes)

4. Left and right subtrees of every node have equal height

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) $=$ height(node.left) - height(node.right)

AVL property: for every node $x,-1 \leq$ balance $(x) \leq 1$

- Ensures small depth
- Can prove by showing an AVL tree of height h must have nodes exponential in h
- Efficient to maintain
- Using single and double rotations

Calculating Height

What is the height of a tree with root r ?

```
int treeHeight(Node root) {
    if(root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
    treeHeight(root.right));
}
```

Running time for tree with n nodes:
$O(n)$ - single pass over tree
Very important detail of definition: height of a null tree is -1 , height of tree with a single node is 0

An AVL Tree?

This is the minimum AVL tree of height 4

Let $S(h)$ be the minimum nodes in height h
$S(h)=S(h-1)+S(h-2)+1$

$S(-1)=0$

$$
S(0)=1
$$

$$
S(1)=2
$$

$$
\begin{aligned}
& S(2)=4 \\
& S(3)=7 \\
& S(4)=12
\end{aligned}
$$

Solution of Recurrence: $\mathrm{S}(\boldsymbol{h}) \approx 1.62^{h}$

An AVL Tree?

AVL Tree Operations

- AVL find:
- Same as BST find
- AVL insert:
- Same as BST insert
- then check balance and potentially fix the AVL tree
- four different imbalance cases
- AVL delete:
- As with insert, do the deletion and then handle imbalance

Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance

What is the only way to fix this?

Single Rotation

- Single rotation: The basic operation we use to rebalance
- Move child of unbalanced node into parent position
- Parent becomes a "other" child
- Other subtrees move in the only way allowed by the BST

AVL Property violated here

Insert and Detect Potential Imbalance

1. Insert the new node (at a leaf, as in a BST)
2. For each node on the path from the new leaf to the root
the insertion may, or may not, have changed the node's height
3. After recursive insertion in a subtree
detect height imbalance
perform a rotation to restore balance at that node
All the action is in defining the correct rotations to restore balance
Fact that an implementation can ignore:

- There must be a deepest element that is imbalanced
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

Single Rotation Example: Insert(16)

Single Rotation Example: Insert(16)

Single Rotation Example: Insert(16)

Left-Left Case

- Node imbalanced due to insertion in left-left grandchild
- This is 1 of 4 possible imbalance cases
- First we did the insertion, which made a imbalanced

Left-Left Case

- So we rotate at a, using BST facts: $\mathrm{X}<\mathrm{b}<\mathrm{Y}<\mathrm{a}<\mathrm{Z}$

- A single rotation restores balance at the node
- Is same height as before insertion, so ancestors now balanced

Right-Right Case

- Mirror image to left-left case, so you rotate the other way
- Exact same concept, but need different code

The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation as before

The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(1), insert(6), insert(3)

Second wrong idea: single rotation on child

Double Rotation

- First attempt at rotation violated the BST property
- Second attempt at rotation did not fix balance
- But if we do both, it works!

Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Right-Left Case

Right-Left Case

- Height of the subtree after rebalancing is the same as before insert
- So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:
Move c to grandparent's position
Put a, b, X, U, V, and Z in the only legal position for a BST

Left-Right Case

- Mirror image of right-left
- No new concepts, just additional code to write

Double Rotation Example: Insert(5)

Summarizing Insert

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
- node's left-left grandchild is too tall
- node's left-right grandchild is too tall
- node's right-left grandchild is too tall
- node's right-right grandchild is too tall
- Only one case can occur, because tree was balanced before insert
- After the single or double rotation, the smallest-unbalanced subtree now has the same height as before the insertion
- So all ancestors are now balanced

Efficiency

Worst-case complexity of find: $O(\log n)$

Worst-case complexity of insert: $O(\log n)$

- Rotation is $O(1)$ and there's an $O(\log n)$ path to root
- Same complexity even without "one-rotation-is-enough" fact

Worst-case complexity of buildTree: $O(n \log n)$

Delete

We will not cover delete

- Multiple snow days, something has to give

Do the delete as in a BST, then balance path up from deleted node

- Which may be predecessor or successor

Single and double rotate based on height imbalance

- You are coming up the shorter subtree
- But need to pull up the taller subtree

Rotation reduces height of the tree

- So you need to check all the way to the root
delete is also $O(\log n)$

