CSE332: Data Abstractions
Lecture 6: Dictionary, BST, AVL Tree

James Fogarty
Winter 2012

Reminders and Questions

« Homework 2 Due Now

e Homework 3 Posted
— Due Friday

* Project 2 Posted
— Group Emails Due Wednesday
— Milestone Due Next Wednesday

The Dictionary (a.k.a. Map) ADT

° Data :oooo-of oooooooooooooooo ro]oltlooo-ogod oooooo
: -+ jfogarty * hchwei .
— Set of (key, value) pairs © James Haochen
— keys must be comparable Fogarty Wei

insert(jfogarty,)
« Operations: .

— insert (key,value) *« trobison « jabrah

- find (key) . Tyler Jenny :
: . . Robison Abrahamson

— delete (key) . find(trobison) : :

— Tyler, Robison, ...

Probably the single most common ADT in everyday programs

We will tend to emphasize the keys, don’t forget about the stored values

Simple Implementations

For dictionary with n key/value pairs

insert find delete
« Unsorted linked-list O(1) O(n) O(n)
« Unsorted array O(1) O(n) O(n)
« Sorted linked list O(n) O(n) O(n)
« Sorted array O(n) O(logn) O(n)

I I
logn+n logn+n

Binary Search

Target 4
< >
- D
1] 3 5 | 7 10

Binary Search Tree

oSS

1134 5|7 8]9]10

Our goal is the performance of binary search in a tree representation

Binary Search Tree

« Structure Property (“binary”)
— each node has < 2 children

« Order Property

— all keys in left subtree are
smaller than node’s key

— all keys in right subtree are
larger than node’s key

Are these BSTs?

Are these BSTs?

Insert and Find in BST

insert (13)
insert (8)
insert (31)
£find (17)
find (11)

Insertion happens at leaves
Find walks down tree

Deletion — The Leaf Case

delete (17)

Deletion — The One Child Case

delete (15)

Deletion — The Two Child Case

delete (5)

What can we use to replace the 57

— successor from right subtree: £findMin (node.right)
— predecessor from left subtree: findMax (node.left)

The Need for a Balanced BST

Observation

. BST is overall great
— The shallower, the better!

* But worst case height is O(n)
— Caused by simple cases, such as pre-sorted data
Solution

Require a Balance Condition that will:

1. ensure depthis always O(logn) - strong enough!
2. be easy to maintain — not too strong!

Potential Balance Conditions

Left and right subtrees of the
root have equal number of nodes

Too weak!
Height mismatch example: é

Left and right subtrees of the
root have equal height

Too weak! %
Double chain example:

Potential Balance Conditions

Left and right subtrees of every
node have equal number of nodes

Too strong!
Only perfect trees (2" — 1 nodes) é

Left and right subtrees of every
node have equal height

Too strong!
Only perfect trees (2" — 1 nodes)

The AVL Balance Condition

Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) — height(node.right)

AVL property: for every node x, —1<balance(x)<1

* Ensures small depth 10

— Can prove by showing an AVL tree of
height h must have nodes exponential in h

« Efficient to maintain

— Using single and double rotations /

\

key
value

height

\ children

Calculating Height

What is the height of a tree with root r?

int treeHeight (Node root) {
i1f (root == null)
return -1;
return 1 + max(treeHeight (root.left),
treeHeight (root.right)) ;

Running time for tree with n nodes:
O(n) — single pass over tree

Very important detail of definition:
height of a null tree is -1, height of tree with a single node is 0

An AVL Tree?

This 1s the minimum
AVL tree of height 4

Let S(h) be the
minimum nodes in height h

S(h) = S(h-1) + S(h-2) + 1

S(-1) = 0 S(2) = 4
S(0) = 1 S(3) =7
S(1) =2 S(4) = 12

Solution of Recurrence: S(h) = 1.62"

An AVL Tree?

AVL Tree Operations

e AVL find:
— Same as BST find

e AVL insert:
— Same as BST insert
 then check balance and potentially fix the AVL tree
 four different imbalance cases

e AVL delete:
— As with insert, do the deletion and then handle imbalance

Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance

What is the only way to fix this?

Single Rotation

« Single rotation: The basic operation we use to rebalance
— Move child of unbalanced node into parent position
— Parent becomes a “other” child
— Other subtrees move in the only way allowed by the BST

AVL Property violated here

Insert and Detect Potential Imbalance

1. Insertthe new node (at a leaf, as in a BST)
2. For each node on the path from the new leaf to the root

the insertion may, or may not, have changed the node’s height
3. After recursive insertion in a subtree

detect height imbalance

perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
— There must be a deepest element that is imbalanced
— After rebalancing this deepest node, every node is balanced
— So at most one node needs to be rebalanced

Single Rotation Example: Insert(16)

Single Rotation Example: Insert(16)

Single Rotation Example: Insert(16)

L eft-Left Case

 Node imbalanced due to insertion in left-left grandchild
— This is 1 of 4 possible imbalance cases

* First we did the insertion, which made a imbalanced

L eft-Left Case

« SO we rotate at a, using BST facts: X<b<Y<a<Z

« A single rotation restores balance at the node
— Is same height as before insertion, so ancestors now balanced

Right-Right Case

« Mirror image to left-left case, so you rotate the other way
— Exact same concept, but need different code

h+3
h+2

The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(l), insert(6), insert(3)

First wrong idea: single rotation as before

D "\

The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree
Simple example: insert(l), insert(6), insert(3)

Second wrong idea: single rotation on child

Double Rotation

» First attempt at rotation violated the BST property
« Second attempt at rotation did not fix balance
« But if we do both, it works!

Double rotation:
1. Rotate problematic child and grandchild

2. Then rotate between self and new child

Intuition: 3 must become root

Right-Left Case

Right-Left Case

« Height of the subtree after rebalancing is the same as before insert
— S0 no ancestor in the tree will need rebalancing
« Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:
Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal position for a BST

Left-Right Case

« Mirror image of right-left
— No new concepts, just additional code to write

Double Rotation Example: Insert(5)

Double Rotation Example: Insert(5)

Double Rotation Example: Insert(5)

Double Rotation Example: Insert(5)

Double Rotation Example: Insert(5)

Double Rotation Example: Insert(5)

Summarizing Insert

* |nsertasin aBST

« Check back up path for imbalance, which will be 1 of 4 cases:
— node’s left-left grandchild is too tall
— node’s left-right grandchild is too tall
— node’s right-left grandchild is too tall
— node’s right-right grandchild is too tall

« Only one case can occur, because tree was balanced before insert

« After the single or double rotation, the smallest-unbalanced
subtree now has the same height as before the insertion

— So all ancestors are now balanced

Efficiency

Worst-case complexity of £ind: O(1log n)

Worst-case complexity of insert: O(log n)
— Rotation is O(1) and there’s an O(1og n) path to root
— Same complexity even without “one-rotation-is-enough” fact

Worst-case complexity of buildTree: O(n 1log n)

Delete

We will not cover delete
— Multiple snow days, something has to give

Do the delete as in a BST, then balance path up from deleted node
— Which may be predecessor or successor

Single and double rotate based on height imbalance
— You are coming up the shorter subtree
— But need to pull up the taller subtree

Rotation reduces height of the tree
— S0 you need to check all the way to the root

delete is also O(log n)

