
CSE332: Data Abstractions

Lecture 6: Dictionary, BST, AVL Tree

James Fogarty

Winter 2012

Reminders and Questions

• Homework 2 Due Now

• Homework 3 Posted

– Due Friday

• Project 2 Posted

– Group Emails Due Wednesday

– Milestone Due Next Wednesday

The Dictionary (a.k.a. Map) ADT

• Data:

– Set of (key, value) pairs

– keys must be comparable

• Operations:

– insert(key,value)

– find(key)

– delete(key)

– …

• jfogarty

James

 Fogarty

 …

• trobison

Tyler

Robison

 …

• hchwei90

Haochen

 Wei

 …

• jabrah

Jenny

Abrahamson

 …

insert(jfogarty, ….)

find(trobison)

Tyler, Robison, …

Probably the single most common ADT in everyday programs

We will tend to emphasize the keys, don’t forget about the stored values

Simple Implementations

For dictionary with n key/value pairs

 insert find delete

• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array

O(1) O(n) O(n)

O(1) O(n) O(n)

O(n) O(n) O(n)

O(n) O(log n) O(n)

 | |

log n + n log n + n

Binary Search

3 4 5 7 8 9 10 1

Target 4

Binary Search Tree

3 4 5 7 8 9 10 1

Our goal is the performance of binary search in a tree representation

Binary Search Tree

4

12 10 6 2

11 5

8

14

13

7 9

• Structure Property (“binary”)

– each node has 2 children

• Order Property

– all keys in left subtree are

smaller than node’s key

– all keys in right subtree are

larger than node’s key

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Insert and Find in BST

20 9 2

15 5

12

30 7 17

insert(13)

insert(8)

insert(31)

find(17)

find(11)

Insertion happens at leaves

Find walks down tree

10

8 31

13

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

delete(17)

10

Deletion – The One Child Case

20 9 2

15 5

12

30 7 10

delete(15)

Deletion – The Two Child Case

30 9 2

20 5

12

7

What can we use to replace the 5?

– successor from right subtree: findMin(node.right)

– predecessor from left subtree: findMax(node.left)

10

delete(5)

The Need for a Balanced BST

Observation

• BST is overall great

– The shallower, the better!

• But worst case height is O(n)

– Caused by simple cases, such as pre-sorted data

Solution

Require a Balance Condition that will:

1. ensure depth is always O(log n) – strong enough!

2. be easy to maintain – not too strong!

Potential Balance Conditions

1. Left and right subtrees of the

root have equal number of nodes

2. Left and right subtrees of the

root have equal height

Too weak!

Height mismatch example:

Too weak!

Double chain example:

Potential Balance Conditions

3. Left and right subtrees of every

node have equal number of nodes

4. Left and right subtrees of every

node have equal height

Too strong!

Only perfect trees (2n – 1 nodes)

Too strong!

Only perfect trees (2n – 1 nodes)

The AVL Balance Condition

Left and right subtrees of every node

have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 balance(x) 1

• Ensures small depth

– Can prove by showing an AVL tree of

height h must have nodes exponential in h

• Efficient to maintain

– Using single and double rotations

…

3

value

height

children

10 key

Calculating Height

What is the height of a tree with root r?

int treeHeight(Node root) {

 if(root == null)

 return -1;

 return 1 + max(treeHeight(root.left),

 treeHeight(root.right));

}

Running time for tree with n nodes:

 O(n) – single pass over tree

Very important detail of definition:

 height of a null tree is -1, height of tree with a single node is 0

An AVL Tree?

12 10 6 2

11 5

8

14 13 7 9

15

This is the minimum

AVL tree of height 4

Let S(h) be the

minimum nodes in height h

S(h) = S(h-1) + S(h-2) + 1

S(-1) = 0 S(2) = 4

S(0) = 1 S(3) = 7

S(1) = 2 S(4) = 12

Solution of Recurrence: S(h) 1.62h

1

1 1 2

0

0

0

0 0

3 2

4

3

11 7 1

8 4

6

2

5

0

0 0 0

1

1

2

3

4

An AVL Tree?

-1

AVL Tree Operations

• AVL find:

– Same as BST find

• AVL insert:

– Same as BST insert

• then check balance and potentially fix the AVL tree

• four different imbalance cases

• AVL delete:

– As with insert, do the deletion and then handle imbalance

Example

Insert(6)

Insert(3)

Insert(1)

Third insertion violates balance

What is the only way to fix this?

6

3

1

2

1

0

6

3

1

0

6
0

Single Rotation

• Single rotation: The basic operation we use to rebalance

– Move child of unbalanced node into parent position

– Parent becomes a “other” child

– Other subtrees move in the only way allowed by the BST

3

1 6
0 0

1

6

3

0

1

2

AVL Property violated here

1

Insert and Detect Potential Imbalance

1. Insert the new node (at a leaf, as in a BST)

2. For each node on the path from the new leaf to the root

 the insertion may, or may not, have changed the node’s height

3. After recursive insertion in a subtree

 detect height imbalance

 perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:

– There must be a deepest element that is imbalanced

– After rebalancing this deepest node, every node is balanced

– So at most one node needs to be rebalanced

Single Rotation Example: Insert(16)

10 4

22 8

15

3 6

19

17 20

24

16

Single Rotation Example: Insert(16)

10 4

22 8

15

3 6

19

17 20

24

16

Single Rotation Example: Insert(16)

10 4

22 8

15

3 6

19

17 20

24

16

10 4

8

15

3 6

19

17

16

22

24 20

Left-Left Case

• Node imbalanced due to insertion in left-left grandchild

– This is 1 of 4 possible imbalance cases

• First we did the insertion, which made a imbalanced

a

Z

Y

b

X

h h

h

h+1

h+2 a

Z

Y

b

X

h+1 h

h

h+2

h+3

Left-Left Case

• So we rotate at a, using BST facts: X < b < Y < a < Z

• A single rotation restores balance at the node

– Is same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h

h

h+2

h+3 b

Z Y

a
h+1 h

h

h+1

h+2

X

Right-Right Case

• Mirror image to left-left case, so you rotate the other way

– Exact same concept, but need different code

a

Z Y

X

h

h
h+1

h+3

b

h+2 b

Z

Y

a

X

h h

h+1

h+1

h+2

The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation as before

3

6

1

0

1

 2

6

1 3

1

0 0

The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(1), insert(6), insert(3)

Second wrong idea: single rotation on child

3

6

1

0

1

 2

6

3

1

0

 1

 2

Double Rotation

• First attempt at rotation violated the BST property

• Second attempt at rotation did not fix balance

• But if we do both, it works!

Double rotation:

1. Rotate problematic child and grandchild

2. Then rotate between self and new child

3

6

1

0

1

 2

6

3

1

0

 1

 2

0 0

1

1

3

6

Intuition: 3 must become root

Right-Left Case

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

a

X

c

h-1

h+1 h

h

V
U

h+2

h+3

Z

b

h

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

Right-Left Case

• Height of the subtree after rebalancing is the same as before insert

– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

a

X

b

c
h-1

h

h

h

V
U

h+1

h+2

h+3

Z

c

X

h-1

h+1

h

h+1

V U

h+2

Z

b

h

a

h

Easier to remember than you may think:

 Move c to grandparent’s position

 Put a, b, X, U, V, and Z in the only legal position for a BST

Left-Right Case

• Mirror image of right-left

– No new concepts, just additional code to write

a

h-1

h

h
h

V U

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1

h

h+1

V U

h+2

Z

a

h

b

h

Double Rotation Example: Insert(5)

5

10 4

8

15

3 6

19

17

20 16

22

24

Double Rotation Example: Insert(5)

5

10 4

8

15

3 6

19

17

20 16

22

24

Double Rotation Example: Insert(5)

5

10 4

8

15

3 6

19

17

20 16

22

24

Double Rotation Example: Insert(5)

5

10 4

8

15

3 6

19

17

20 16

22

24

15

19

17

20 16

22

24

10

8

Double Rotation Example: Insert(5)

5

10 4

8

15

3 6

19

17

20 16

22

24

15

19

17

20 16

22

24

10

8

6

4

3 5

Double Rotation Example: Insert(5)

15

19

17

20 16

22

24

10

8

6

4

3 5

15

19

17

20 16

22

24 10

8

6

4

3 5

Summarizing Insert

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:

– node’s left-left grandchild is too tall

– node’s left-right grandchild is too tall

– node’s right-left grandchild is too tall

– node’s right-right grandchild is too tall

• Only one case can occur, because tree was balanced before insert

• After the single or double rotation, the smallest-unbalanced

subtree now has the same height as before the insertion

– So all ancestors are now balanced

Efficiency

Worst-case complexity of find: O(log n)

Worst-case complexity of insert: O(log n)

– Rotation is O(1) and there’s an O(log n) path to root

– Same complexity even without “one-rotation-is-enough” fact

Worst-case complexity of buildTree: O(n log n)

Delete

We will not cover delete

– Multiple snow days, something has to give

Do the delete as in a BST, then balance path up from deleted node

– Which may be predecessor or successor

Single and double rotate based on height imbalance

– You are coming up the shorter subtree

– But need to pull up the taller subtree

Rotation reduces height of the tree

– So you need to check all the way to the root

delete is also O(log n)

