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Administrative 

• Midterm Review Poll 

 

• Project 2a Due Wednesday 

 

• Homework 4 Due Friday 

 

• Feedback Plans 



Homework 2, Problem 2 
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Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 
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Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 
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Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 
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Open Addressing: Linear Probing 

• Why not use up the empty space in the table? 

 

• Store directly in the array cell (no linked list) 

 

• How to deal with collisions? 

 

• If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 

0 8 

1 109 

2 10 

3 / 

4 / 

5 / 

6 / 

7 / 

8 38 

9 19 



Open Addressing 

This is one example of open addressing 
 

In general, open addressing means resolving  

collisions by trying a sequence of other positions in the table 
 

Trying the next spot is called probing 

– We just did linear probing 
h(key) + i) % TableSize 

– In general have some probe function f and use              

h(key) + f(i) % TableSize 
 

Open addressing does poorly with high load factor  

– So we want larger tables 

– Too many probes means we lose our O(1) 

 



Terminology 

We and the book use the terms 

– “chaining” or “separate chaining” 

– “open addressing” 

 

Very confusingly, 

– “open hashing” is a synonym for “chaining” 

– “closed hashing” is a synonym for “open addressing” 

 

We also do trees upside-down 



Other Operations 

insert finds an open table position using a probe function 

 

What about find? 

– Must use same probe function to “retrace the trail” for the data 

– Unsuccessful search when reach empty position 

 

What about delete? 

– Must use “lazy” deletion.  Why? 

 

– Marker indicates “no data here, but don’t stop probing” 

10  / 23 / / 16  26 



Primary Clustering 

It turns out linear probing is a bad idea, even though the probe 

function is quick to compute (which is a good thing) 

[R. Sedgewick] 

Tends to produce 

clusters, which lead to 

long probe sequences 

 

• Called  

primary clustering 

 

• Saw this starting in 

our example 



Analysis of Linear Probing 

• Trivial fact: For any  < 1, linear probing will find an empty slot 

– It is “safe” in this sense: no infinite loop unless table is full 

 

• Non-trivial facts we won’t prove: 

 Average # of probes given  (in the limit as TableSize → ) 

– Unsuccessful search: 

 

 

– Successful search:   

 

 

• This is pretty bad: need to leave sufficient empty space in the 

table to get decent performance (let’s look at a chart) 
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Analysis in Chart Form 

• Linear-probing performance degrades rapidly as table gets full 

– Formula assumes “large table” but point remains 
 

 

 

 

 

 

 

 

 

 

• Chaining performance was linear in  and has no trouble with  > 1 



Open Addressing: Quadratic Probing 

• We can avoid primary clustering by changing the probe function

  

      (h(key) + f(i)) % TableSize 
 

– For quadratic probing:  

f(i) = i2 

– So probe sequence is: 

• 0th probe:  h(key) % TableSize 

• 1st probe: (h(key) + 1) % TableSize 

• 2nd probe: (h(key) + 4) % TableSize 

• 3rd probe: (h(key) + 9) % TableSize 

• … 

• ith probe: (h(key) + i2) % TableSize 
 

• Intuition: Probes quickly “leave the neighborhood” 



Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 

0 49 

1 

2 

3 

4 

5 

6 

7 

8 18 

9 89 

TableSize=10 

 

Insert:  

89 

18 

49 

58 

79 



Quadratic Probing Example 
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Quadratic Probing Example 

0 49 

1 

2 58 

3 79 
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Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 
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Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 

 

 

0 

1 

2 

3 

4 

5 

6 76 



Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 
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Another Quadratic Probing Example 

TableSize = 7 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 
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Another Quadratic Probing Example 

TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 

40                 (40 % 7 = 5) 

48                   (48 % 7 = 6) 

5                     (  5 % 7 = 5) 

55                   (55 % 7 = 6) 

47                   (47 % 7 = 5) 
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Doh: For all n, (5 +(n*n)) % 7 is 0, 2, 5, or 6 

 
Proof uses induction and  (n2+5) % 7 = ((n-7)2+5) % 7 

In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k 



From Bad News to Good News 

• After TableSize quadratic probes, we cycle through the same indices 

 

• The good news:  

 

– For prime T and 0  i,j  T/2 where i  j, 

    (h(key) + i2) % T  (h(key) + j2) % T 

 

– If T = TableSize is prime and  < ½,  

quadratic probing will find an empty slot in at most T/2 probes 
 

– If you keep  < ½, no need to detect cycles 
 



Clustering Reconsidered 

• Quadratic probing does not suffer from primary clustering: 

quadratic nature quickly escapes the neighborhood 

 

• But it’s no help if keys initially hash to the same index 

– Any 2 keys that hash to the same value will have the same 

series of moves after that 

– Called secondary clustering 

 

• Can avoid secondary clustering with a probe function that 

depends on the key: double hashing 



Open Addressing: Double Hashing 

Idea:  Given two good hash functions h and g,  
 it is very unlikely that for some key,  h(key) == g(key) 

 

  (h(key) + f(i)) % TableSize 
 

– For double hashing:  

f(i) = i*g(key) 

– So probe sequence is: 

• 0th probe:  h(key) % TableSize 

• 1st probe: (h(key) + g(key)) % TableSize 

• 2nd probe: (h(key) + 2*g(key)) % TableSize 

• 3rd probe: (h(key) + 3*g(key)) % TableSize 

• … 

• ith probe: (h(key) + i*g(key)) % TableSize 
 

• Detail: Must make sure that g(key) cannot be 0 

 



Double Hashing 
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Double Hashing 
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Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 
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Double Hashing 

0 

1 

2 

3 13 

4 

5 

6 

7 33 

8 28 

9 147 

Insert these values into the hash table 

in this order.  Resolve any collisions 

with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1)) 

    

Doh: 

3 + 0 = 3 3 + 15 = 18 

3 + 5 = 8 3 + 20 = 23 

3 + 10 = 13 3 + 25 = 28 



Double Hashing Analysis 

• Intuition:  

 

 Because each probe is “jumping” by g(key) each time,  

 we should both “leave the neighborhood” and  

 “go different places from the same initial collision” 

 

• But, as in quadratic probing, we could still have a problem 

where we are not “safe” (infinite loop despite room in table) 

 

• It is known that this cannot happen in at least one case: 

• h(key) = key % p 

• g(key) = q – (key % q) 

• 2 < q < p 

• p and q are prime 



Where are we? 

• Separate Chaining is easy 

– find, delete proportional to load factor on average 

– insert can be constant if just push on front of list 

 

• Open addressing uses probing, has clustering issues as it gets full 

– Why use it: 

• Less memory allocation?  

• Run-time overhead for list nodes; array could be faster? 

• Easier data representation? 

 

• Now:  

– Growing the table when it gets too full (aka “rehashing”) 

– Relation between hashing/comparing and connection to Java 



Rehashing 

• As with array-based stacks/queues/lists 

– If table gets too full, create a bigger table and copy everything 
 

• With chaining, we get to decide what “too full” means 

– Keep load factor reasonable (e.g., < 1)? 

– Consider average or max size of non-empty chains? 
 

• For open addressing, half-full is a good rule of thumb 
 

• New table size 

– Twice-as-big is a good idea, except that won’t be prime! 

– So go about twice-as-big  

– Can have a list of prime numbers in your code,  

since you probably will not grow more than 20-30 times,  

and can then calculate after that 



Rehashing 

• What if we copy all data to the same indices in the new table? 

– Will not work; we calculated the index based on TableSize 

 

• Go through table, do standard insert for each into new table 

– Run-time? 

– O(n):  Iterate through old table 

 

• Resize is an O(n) operation, involving n calls to the hash function  

– Is there some way to avoid all those hash function calls? 

 

– Space/time tradeoff: Could store h(key) with each data item 

 

– Growing the table is still O(n); only helps by a constant factor 



Hashing and Comparing 

• Our use of int key can lead to overlooking a critical detail 

– We initial hash E,  

– While chaining or probing, we compare to E. 

• Just need equality testing (i.e., compare == 0) 
 

• So a hash table needs a hash function and a comparator 

– In Project 2, you will use two function objects 

– The Java library uses a more object-oriented approach:  
each object has an equals method and a hashCode method: 

 

 

 

class Object {  

  boolean equals(Object o) {…} 

  int hashCode() {…} 

  … 

} 



Equal Objects Must Hash the Same 

• The Java library (and your project hash table) 

make a very important assumption that clients must satisfy 
 

• Object-oriented way of saying it: 

 If a.equals(b), then we must require 

a.hashCode()==b.hashCode() 
 

• Function object way of saying it: 

       If c.compare(a,b) == 0, then we must require 

           h.hash(a) == h.hash(b) 

 

• If you ever override equals 

– You need to override hashCode also in a consistent way 

– See CoreJava book, Chapter 5 for other “gotchas” with equals 

 



Comparable/Comparator Have Rules Too 

We have not emphasized important “rules” about comparison for: 

– all our dictionaries 

– sorting (next major topic) 

 

Comparison must impose a consistent, total ordering: 

 

For all a, b, and c, 

– If compare(a,b) < 0, then compare(b,a) > 0 

– If compare(a,b) == 0, then compare(b,a) == 0 

– If compare(a,b) < 0 and  

   compare(b,c) < 0, then compare(a,c) < 0 



A Generally Good hashCode() 

• int result = 17; 

• foreach field f 

– int fieldHashcode = 

• boolean: (f ? 1: 0) 

• byte, char, short, int: (int) f 

• long: (int) (f ^ (f >>> 32)) 

• float: Float.floatToIntBits(f) 

• double: Double.doubleToLongBits(f), then above 

• Object: object.hashCode( ) 

– result = 31 * result + fieldHashcode 

 



Final Word on Hashing 

• The hash table is one of the most important data structures 

– Efficient find, insert, and delete 

– Operations based on sort order are not so efficient 

• e.g., FindMin, FindMax, predecessor 

 

• Important to use a good hash function 

– Good distribution, uses enough of key’s meaningful values 

 

• Important to keep hash table at a good size 

– Prime #, preferable  depends on type of table 

 

• Popular topic for job interview questions 

– Also many real-world applications 

 

 


