CSE332: Data Abstractions Lecture 9: Hashing

James Fogarty
Winter 2012

Administrative

- Midterm Review Poll
- Project 2a Due Wednesday
- Homework 4 Due Friday
- Feedback Plans

Homework 2, Problem 2

Need to percolate down

Also must percolate up

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(k e y)$ is already full,

$$
\begin{aligned}
& \text { - try (h(key) + 1) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 2) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 3) } \% \text { TableSize. If full... }
\end{aligned}
$$

1
1
1
1
1
1
1
1
1
1

- Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(k e y)$ is already full,

$$
\begin{aligned}
& \text { - try (h (key) + 1) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 2) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 3) } \% \text { TableSize. If full... }
\end{aligned}
$$

1
1
1
1
1
1
1
1
38
1

- Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(k e y)$ is already full,

$$
\begin{aligned}
& \text { - try (h(key) + 1) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 2) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 3) } \% \text { TableSize. If full... }
\end{aligned}
$$

1
1
1
1
1
1
1
1
38
19

- Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(k e y)$ is already full,

$$
\begin{aligned}
& \text { - try (h(key) + 1) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 2) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 3) } \% \text { TableSize. If full... }
\end{aligned}
$$

8
1
1
1
1
1
1
1
38
19

- Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(k e y)$ is already full,

$$
\begin{aligned}
& \text { - try (h(key) + 1) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 2) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 3) } \% \text { TableSize. If full... }
\end{aligned}
$$

8
109
1
1
1
1
1
1
38
19

- Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(k e y)$ is already full,

$$
\begin{aligned}
& \text { - try (h(key) + 1) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 2) } \% \text { TableSize. If full, } \\
& \text { - try (h (key) + 3) } \% \text { TableSize. If full... }
\end{aligned}
$$

8
109
10
1
1
1
1
1
38
19

- Example: insert 38, 19, 8, 109, 10

Open Addressing

This is one example of open addressing
In general, open addressing means resolving
collisions by trying a sequence of other positions in the table
Trying the next spot is called probing

- We just did linear probing $h($ key $) ~+~ i) ~ \% ~ T a b l e S i z e ~$
- In general have some probe function f and use $h($ key $)+f(i) \%$ TableSize

Open addressing does poorly with high load factor λ

- So we want larger tables
- Too many probes means we lose our $O(1)$

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
- "closed hashing" is a synonym for "open addressing"

We also do trees upside-down

Other Operations

insert finds an open table position using a probe function

What about find?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
- Marker indicates "no data here, but don't stop probing"

10	\times	$/$	23	$/$	$/$	16	\times	26

Primary Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probe sequences

- Called primary clustering
- Saw this starting in our example

Analysis of Linear Probing

- Trivial fact: For any $\lambda<1$, linear probing will find an empty slot
- It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:

Average \# of probes given λ (in the limit as TableSize $\rightarrow \infty$)

- Unsuccessful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

- Successful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)
$$

- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (let's look at a chart)

Analysis in Chart Form

- Linear-probing performance degrades rapidly as table gets full
- Formula assumes "large table" but point remains

Linear Probing			Linear Probing	
	—linear probing not found linear probing found		 Load Factor	—linear probing not found linear probing found

- Chaining performance was linear in λ and has no trouble with $\lambda>1$

Open Addressing: Quadratic Probing

- We can avoid primary clustering by changing the probe function
(h(key) $+\mathrm{f}(\mathrm{i})$) \% TableSize
- For quadratic probing:

$$
f(i)=i^{2}
$$

- So probe sequence is:
- $0^{\text {th }}$ probe: $\mathrm{h}(\mathrm{key}) ~ \% ~ T a b l e S i z e ~$
- $1^{\text {st }}$ probe: $(\mathrm{h}(\mathrm{key})+1) \%$ TableSize
- $2^{\text {nd }}$ probe: $(\mathrm{h}(\mathrm{key})+4)$ \% TableSize
- $3^{\text {rd }}$ probe: (h(key) + 9) \% TableSize
- ...
- $i^{\text {th }}$ probe: (h(key) $+i^{2}$) $\%$ TableSize
- Intuition: Probes quickly "leave the neighborhood"

Quadratic Probing Example

TableSize=10

Insert: 89
18
49
58
79

Quadratic Probing Example

TableSize=10

Insert: 89
18
49
58
79

Quadratic Probing Example

TableSize=10

Insert: 89
18
49
58
79

Quadratic Probing Example

TableSize=10

Insert:
89
18
49
58
79

Quadratic Probing Example

TableSize=10

Insert: 89
18
49
58
79

Quadratic Probing Example

0	49
1	
2	58
3	79
4	
5	
6	
7	
8	18
9	89

TableSize=10

Insert: 89
18
49
58
79

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	(48\% $7=6$)
5	($5 \% 7=5$)
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	(48\% $7=6$)
5	($5 \% 7=5$)
55	$(55 \% 7=6)$
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	($5 \% 7=5$)
55	(55\%7 = 6)
47	$(47 \% 7=5)$

Another Quadratic Probing Example

0	48
1	
2	
3	
4	
5	40
6	76

TableSize $=7$
Insert:

$\mathbf{7 6}$	$(\mathbf{7 6} \% 7=\mathbf{6})$
$\mathbf{4 0}$	$(\mathbf{4 0} \% \mathbf{7}=\mathbf{5})$
$\mathbf{4 8}$	$(\mathbf{4 8} \% \mathbf{7}=\mathbf{6})$
$\mathbf{5}$	$(\mathbf{5} \% \mathbf{7}=\mathbf{5})$
$\mathbf{5 5}$	$(\mathbf{5 5} \% \mathbf{7}=\mathbf{6})$
$\mathbf{4 7}$	$(\mathbf{4 7} \% \mathbf{7}=\mathbf{5})$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	($5 \% 7=5$)
55	(55\%7 = 6)
47	$(47 \% 7=5)$

Another Quadratic Probing Example

TableSize $=7$
Insert:

76	$(76 \% 7=6)$
40	$(40 \% 7=5)$
48	$(48 \% 7=6)$
5	($5 \% 7=5$)
55	(55\%7 = 6)
47	$(47 \% 7=5)$

Another Quadratic Probing Example

0	48
1	
2	5
3	55
4	
5	40
6	76

TableSize $=7$
Insert:

$\mathbf{7 6}$	$(\mathbf{7 6} \% 7=\mathbf{6})$
$\mathbf{4 0}$	$(\mathbf{4 0} \% 7=5)$
$\mathbf{4 8}$	$(\mathbf{4 8} \% 7=\mathbf{6})$
$\mathbf{5}$	$(\mathbf{5} \% 7=5)$
$\mathbf{5 5}$	$(\mathbf{5 5} \% 7=\mathbf{6})$
47	$(\mathbf{4 7} \% 7=5)$

Doh: For all $n,(5+(\mathrm{n} * \mathrm{n})) \% 7$ is $0,2,5$, or 6
Proof uses induction and $\left(n^{2}+5\right) \div 7=\left((n-7)^{2}+5\right) \div 7$ In fact, for all c and $k,\left(n^{2}+c\right) \% \mathbf{k}=\left((n-k)^{2}+c\right) \% k$

From Bad News to Good News

- After TableSize quadratic probes, we cycle through the same indices
- The good news:
- For prime \boldsymbol{T} and $0 \leq i, j \leq T / 2$ where $i \neq j$, $\left(h(k e y)+i^{2}\right) \% T \neq\left(h(k e y)+j^{2}\right) \% T$
- If $\boldsymbol{T}=$ TableSize is prime and $\lambda<1 / 2$, quadratic probing will find an empty slot in at most $T / 2$ probes
- If you keep $\lambda<1 / 2$, no need to detect cycles

Clustering Reconsidered

- Quadratic probing does not suffer from primary clustering: quadratic nature quickly escapes the neighborhood
- But it's no help if keys initially hash to the same index
- Any 2 keys that hash to the same value will have the same series of moves after that
- Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing

Open Addressing: Double Hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key, h (key) $==\mathrm{g}$ (key)
(h(key) $+\mathrm{f}(\mathrm{i})$) \% TableSize

- For double hashing:

$$
f(i)=i * g(k e y)
$$

- So probe sequence is:
- $0^{\text {th }}$ probe: $\mathrm{h}(\mathrm{key}) ~ \% ~ T a b l e S i z e ~$
- $1^{\text {st }}$ probe: $(\mathrm{h}(\mathrm{key})+\mathrm{g}(\mathrm{key}))$ \% TableSize
- $2^{\text {nd }}$ probe: (h(key) $\left.+2 * g(k e y)\right)$ \% TableSize
- $3^{\text {rd }}$ probe: (h (key) $\left.+3 * g(k e y)\right) ~ \% ~ T a b l e S i z e ~$
- ...
- ith probe: (h(key) + i*g(key)) \% TableSize
- Detail: Must make sure that g (key) cannot be 0

Double Hashing

$$
\begin{aligned}
& \mathrm{T}=10 \text { (TableSize) } \\
& \text { Hash Functions: } \\
& \hline \mathrm{h}(\mathrm{key})=\text { key } \bmod \mathrm{T} \\
& \mathrm{~g}(\mathrm{key})=1+((\mathrm{key} / \mathrm{T}) \bmod (\mathrm{T}-1))
\end{aligned}
$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43

Double Hashing

$$
\begin{aligned}
& \mathrm{T}=10 \text { (TableSize) } \\
& \text { Hash Functions: } \\
& \hline \mathrm{h}(\mathrm{key})=\text { key } \bmod \mathrm{T} \\
& \mathrm{~g}(\mathrm{key})=1+((\mathrm{key} / \mathrm{T}) \bmod (\mathrm{T}-1))
\end{aligned}
$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43

Double Hashing

$$
\begin{aligned}
& \mathrm{T}=10 \text { (TableSize) } \\
& \text { Hash Functions: } \\
& \hline \mathrm{h}(\mathrm{key})=\text { key } \bmod \mathrm{T} \\
& \mathrm{~g}(\mathrm{key})=1+((\mathrm{key} / \mathrm{T}) \bmod (\mathrm{T}-1))
\end{aligned}
$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43

Double Hashing

$$
\begin{aligned}
& \mathrm{T}=10 \text { (TableSize) } \\
& \text { Hash Functions: } \\
& \hline \mathrm{h}(\mathrm{key})=\text { key } \bmod \mathrm{T} \\
& \mathrm{~g}(\mathrm{key})=1+((\mathrm{key} / \mathrm{T}) \bmod (\mathrm{T}-1))
\end{aligned}
$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43

Double Hashing

$$
\begin{aligned}
& \mathrm{T}=10 \text { (TableSize) } \\
& \text { Hash Functions: } \\
& \hline \mathrm{h}(\mathrm{key})=\text { key } \bmod \mathrm{T} \\
& \mathrm{~g}(\mathrm{key})=1+((\mathrm{key} / \mathrm{T}) \bmod (\mathrm{T}-1))
\end{aligned}
$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43

Double Hashing

T = 10 (TableSize)
Hash Functions:

$$
\begin{aligned}
& h(\text { key })=\text { key } \bmod T \\
& g(\text { key })=1+((\text { key } / T) \bmod (T-1))
\end{aligned}
$$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147 Doh:
43

$$
\begin{array}{ll}
3+0=3 & 3+15=18 \\
3+5=8 & 3+20=23 \\
3+10=13 & 3+25=28
\end{array}
$$

Double Hashing Analysis

- Intuition:

Because each probe is "jumping" by g (key) each time, we should both "leave the neighborhood" and "go different places from the same initial collision"

- But, as in quadratic probing, we could still have a problem where we are not "safe" (infinite loop despite room in table)
- It is known that this cannot happen in at least one case:
- $\mathrm{h}(\mathrm{key})=\mathrm{key} \% \mathrm{p}$
- $g(k e y)=q-(k e y ~ \% ~ q) ~$
- $2<\mathrm{q}<\mathrm{p}$
- p and q are prime

Where are we?

- Separate Chaining is easy
- find, delete proportional to load factor on average
- insert can be constant if just push on front of list
- Open addressing uses probing, has clustering issues as it gets full
- Why use it:
- Less memory allocation?
- Run-time overhead for list nodes; array could be faster?
- Easier data representation?
- Now:
- Growing the table when it gets too full (aka "rehashing")
- Relation between hashing/comparing and connection to Java

Rehashing

- As with array-based stacks/queues/lists
- If table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
- Keep load factor reasonable (e.g., < 1)?
- Consider average or max size of non-empty chains?
- For open addressing, half-full is a good rule of thumb
- New table size
- Twice-as-big is a good idea, except that won't be prime!
- So go about twice-as-big
- Can have a list of prime numbers in your code, since you probably will not grow more than 20-30 times, and can then calculate after that

Rehashing

- What if we copy all data to the same indices in the new table?
- Will not work; we calculated the index based on TableSize
- Go through table, do standard insert for each into new table
- Run-time?
- $\mathrm{O}(\mathrm{n})$: Iterate through old table
- Resize is an $O(n)$ operation, involving n calls to the hash function - Is there some way to avoid all those hash function calls?
- Space/time tradeoff: Could store h(key) with each data item
- Growing the table is still $O(n)$; only helps by a constant factor

Hashing and Comparing

- Our use of int key can lead to overlooking a critical detail
- We initial hash E ,
- While chaining or probing, we compare to E.
- Just need equality testing (i.e., compare ==0)
- So a hash table needs a hash function and a comparator
- In Project 2, you will use two function objects
- The Java library uses a more object-oriented approach: each object has an equals method and a hashCode method:

```
class Object {
    boolean equals(Object o) {...}
    int hashCode() {...}
}
```


Equal Objects Must Hash the Same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy
- Object-oriented way of saying it:

If a . equals (b), then we must require
a.hashCode ()==b. hashCode ()

- Function object way of saying it:

```
If c.compare (a,b) == 0, then we must require
h.hash(a) == h.hash(b)
```

- If you ever override equals
- You need to override hashCode also in a consistent way
- See CoreJava book, Chapter 5 for other "gotchas" with equals

Comparable/Comparator Have Rules Too

We have not emphasized important "rules" about comparison for:

- all our dictionaries
- sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all \mathbf{a}, b, and \mathbf{c},

- If compare (a, b) < 0, then compare $(\mathrm{b}, \mathrm{a})>0$
- If compare $(a, b)=0$, then compare $(b, a)==0$
- If compare $(a, b)<0$ and compare (b, c) < 0, then compare (a, c) < 0

A Generally Good hashCode()

- int result = 17;
- foreach field f
- int fieldHashcode =
- boolean: (f ? 1:0)
- byte, char, short, int: (int) f
- long: (int) (f ^ (f >>> 32))

- float: Float.floatToIntBits(f)
- double: Double.doubleToLongBits(f), then above
- Object: object.hashCode()
- result = 31 * result + fieldHashcode

Final Word on Hashing

- The hash table is one of the most important data structures
- Efficient find, insert, and delete
- Operations based on sort order are not so efficient
- e.g., FindMin, FindMax, predecessor
- Important to use a good hash function
- Good distribution, uses enough of key's meaningful values
- Important to keep hash table at a good size
- Prime \#, preferable λ depends on type of table
- Popular topic for job interview questions
- Also many real-world applications

