CSE332: Data Abstractions Lecture 10: Comparison Sorting

James Fogarty
Winter 2012

Introduction to Sorting

- We have covered stacks, queues, priority queues, and dictionaries
- All focused on providing one element at a time
- But often we know we want "all the things" in some order
- Anyone can sort, but a computer can sort faster
- Very common to need data sorted somehow
- Alphabetical list of people
- List of countries ordered by population

- Algorithms have different asymptotic and constant-factor trade-offs
- No single "best" sort for all scenarios
- Knowing "one way to sort" is not sufficient

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

- Find the $\mathbf{k}^{\text {th }}$ largest in constant time for any \mathbf{k}
- Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

- How often the data will change
- How much data there is

Careful Statement of the Basic Problem

Assume we have n comparable elements in an array, and we want to rearrange them to be in increasing order

Input:

- An array A of data records
- A key value in each data record (potentially a set of fields)
- A comparison function (must be consistent and total)
- Given keys a and b, what is their relative ordering? $<,=,>$?

Effect:

- Reorganize the elements of \mathbf{A} such that for any \mathbf{i} and \mathbf{j},

$$
\text { if } i<j \text { then } A[i] \leq A[j]
$$

- Unspoken assumption: A must have all the data it started with

An algorithm doing this is a comparison sort

Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms need not do so)
2. Maybe ties need to be resolved by "original array position"

- Sorts that do this naturally are called stable sorts
- Others could tag each item with its original position and adjust their comparisons (non-trivial constant factors)

3. Maybe we must not use more than $O(1)$ "auxiliary space"

- Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

- Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

- Use an "external sorting" algorithm

Sorting: The Big Picture

Simple
algorithms:
$\mathbf{O}\left(n^{2}\right)$

\square

Insertion sort Selection sort Shell sort
Fancier
algorithms:
$\mathbf{O}(n \log n)$

Heap sort
Merge sort Quick sort (avg)

Bucket sort
Radix sort

Handling huge data sets

External sorting

Insertion Sort

- Idea: At step \mathbf{k}, put the $\mathbf{k}^{\text {th }}$ input element in the correct position among the first \mathbf{k} elements
- Alternate way of saying this:
- Sort first element (this is easy)
- Now insert $2^{\text {nd }}$ element in order
- Now insert 3rd element in order
- Now insert 4 ${ }^{\text {th }}$ element in order
- ...
- "Loop invariant": when loop index is i, first i elements are sorted
- Time?

Best-case \qquad
\qquad
\qquad

Insertion Sort

- Idea: At step \mathbf{k}, put the $\mathbf{k}^{\text {th }}$ input element in the correct position among the first \mathbf{k} elements
- Alternate way of saying this:
- Sort first element (this is easy)
- Now insert $2^{\text {nd }}$ element in order
- Now insert 3rd element in order
- Now insert $4^{\text {th }}$ element in order
- ...
- "Loop invariant": when loop index is i, first i elements are sorted
- Time?

Best-case O(n) Worst-case O(n²) "Average" case O(n²) start sorted start reverse sorted (see text)

Selection Sort

- Idea: At step \mathbf{k}, find the smallest element among the unsorted elements and put it at position k
- Alternate way of saying this:
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }}$
- ...
- "Loop invariant": when loop index is \mathbf{i}, first i elements are the i smallest elements in sorted order
- Time?

Best-case \qquad Worst-case \qquad "Average" case \qquad

Selection Sort

- Idea: At step \mathbf{k}, find the smallest element among the unsorted elements and put it at position k
- Alternate way of saying this:
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }}$
- ...
- "Loop invariant": when loop index is \mathbf{i}, first i elements are the i smallest elements in sorted order
- Time?

$$
\begin{aligned}
& \text { Best-case } O\left(n^{2}\right) \text { Worst-case } O\left(n^{2}\right) \quad \text { "Average" case } O\left(n^{2}\right) \\
& \text { Always } T(1)=1 \text { and } T(n)=n+T(n-1)
\end{aligned}
$$

Mystery Sort

This is one implementation of which sorting algorithm (shown for ints)?

```
void mystery(int[] arr) {
    for(int i = 1; i < arr.length; i++) {
        int tmp = arr[i];
        int j;
        for(j=i; j > 0 && tmp < arr[j-1]; j--)
            arr[j] = arr[j-1];
        arr[j] = tmp;
    }
}
```

Note: As with heaps, "moving the hole" is faster than unnecessary swapping (impacts constant factor)

Insertion Sort vs. Selection Sort

- They are different algorithms
- They solve the same problem
- Have the same worst-case and average-case asymptotic complexity
- Insertion-sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for non-small arrays that are not already almost sorted
- Small arrays may do well with Insertion sort

Aside: We Will Not Cover Bubble Sort

- It does not have good asymptotic complexity: $O\left(n^{2}\right)$
- It is not particularly efficient with respect to constant factors
- Almost everything it is good at, some other algorithm is at least as good at
- Perhaps some people teach it just because it was taught to them
- For fun see: "Bubble Sort: An Archaeological Algorithmic Analysis", Owen Astrachan, SIGCSE 2003

Sorting: The Big Picture

Simple
algorithms:
$\mathbf{O}\left(n^{2}\right)$

\square

Insertion sort Selection sort Shell sort
Fancier
algorithms:
$\mathbf{O}(n \log n)$

Heap sort
Merge sort Quick sort (avg)

Bucket sort
Radix sort

Handling huge data sets

External sorting

Heap Sort

- As you are seeing in Project 2, sorting with a heap is easy:
- insert each arr[i], or better yet do a buildHeap
- for (i=0; i < arr.length; i++)

```
arr[i] = deleteMin();
```

- Worst-case running time:
$O(n \log n)$
Why?
- We have the array-to-sort and the heap
- So this is not an in-place sort
- There's a trick to make it in-place

In-Place Heap Sort

But this reverse sorts how would you fix that?

Reverse your comparator, so you build a maxHeap

- Treat the initial array as a heap (via buildHeap)
- When you delete the $i^{\text {th }}$ element, put it at arr [n-i]
- That array location is not part of the heap anymore!

"AVL sort"

- We can also use a balanced tree to:
- insert each element: total time $O(n \log n)$
- Repeatedly deleteMin: total time $O(n \log n)$
- But this cannot be made in-place, and it has worse constant factors than heap sort
- both are $O(n \log n)$ in worst, best, and average case
- neither parallelizes well
- heap sort is better
- Do not even think about trying to sort with a hash table

Divide and Conquer

Very important technique in algorithm design

1. Divide problem into smaller parts
2. Independently solve the simpler parts

- Think recursion
- Or potential parallelism

3. Combine solution of parts to produce overall solution

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively) Sort the right half of the elements (recursively) Merge the two sorted halves into a sorted whole
2. Quicksort: Pick a "pivot" element

Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is [sorted-less-than, then pivot, then sorted-greater-than

Mergesort

- To sort array from position lo to position hi:
- If range is 1 element long, it is already sorted! (our base case)
- Else, split into two halves:
- Sort from lo to (hi+lo) /2
- Sort from (hi+lo)/2 to hi
- Merge the two halves together
- Merging takes two sorted parts and sorts everything
- $O(n)$ but requires auxiliary space...

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:
Use 3 "fingers" aux
and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:
Use 3 "fingers" aux and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:
Use 3 "fingers" aux and 1 more array
(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:
Use 3 "fingers" aux and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:

	Use 3 "fingers" aux	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{4}$				

and 1 more array
(After merge,
copy back to
original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:
Use 3 "fingers" aux and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:
Use 3 "fingers" aux and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:

Use 3 "fingers" aux | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:

Use 3 "fingers" aux | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | and 1 more array

(After merge, copy back to original array)

Example: Focus on Merging

Start with:

After recursion: (for now we just assume it works)

Merge:

Use 3 "fingers" aux | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | and 1 more array

(After merge, copy back to original array)

Example: Mergesort Recursion

Mergesort: Some Time Saving Details

- What if the final steps of our merge looked like this:

- Wasteful to copy to the auxiliary array just to copy back...

Mergesort: Some Time Saving Details

- If left-side finishes first, just stop the merge and copy back:

- If right-side finishes first, copy dregs into right then copy back:

Mergesort: Saving Space and Copying

Simplest / Worst:
Use a new auxiliary array of size (hi-lo) for every merge
Better:
Use a new auxiliary array of size n for every merging stage
Better:
Reuse same auxiliary array of size n for every merging stage
Best:
Do not copy back after merge, instead swap usage of the original and auxiliary array (i.e., even levels move to auxiliary array, odd levels move back to original array)

- Need one copy at end if number of stages is odd

Swapping Original and Auxiliary Array

- First recurse down to lists of size 1
- As we return from the recursion, swap between arrays

- Arguably easier to code without using recursion at all

Mergesort Analysis

Having defined an algorithm and argued it is correct, we can analyze its running time and space:

To sort n elements, we:

- Return immediately if $n=1$
- Else do 2 subproblems of size $n / 2$ and then an $O(n)$ merge

Recurrence relation:

$$
\begin{aligned}
& \mathrm{T}(1)=\mathrm{c}_{1} \\
& \mathrm{~T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{c}_{2} n
\end{aligned}
$$

Mergesort Analysis

This recurrence is common enough you just "know" it's $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):

- The recursion "tree" will have $\log n$ height
- At each level we do a total amount of merging equal to n

Quicksort

- Also uses divide-and-conquer
- Recursively chop into halves
- Instead of doing all the work as we merge together, we will do all the work as we recursively split into halves
- Unlike MergeSort, does not need auxiliary space
- $O(n \log n)$ on average, but $O\left(n^{2}\right)$ worst-case
- MergeSort is always $\mathrm{O}(n \log n)$
- So why use QuickSort at all?
- Can be faster than Mergesort
- Believed by many to be faster
- Quicksort does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

1. Pick a pivot element
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C
4. The answer is as simple as " $\mathrm{A}, \mathrm{B}, \mathrm{C}$ "

Alas, there are some details lurking in this algorithm

Quicksort: Think in Terms of Sets

[Weiss]

Example: Quicksort Recursion

Quicksort Details

We have not explained:

- How to pick the pivot element
- Any choice is correct: data will end up sorted
- But we want the two partitions to be about equal in size
- How to implement partitioning
- In linear time
- In place

Pivots

- Best pivot?
- Median
- Halve each time
- Worst pivot?
- Greatest/least element
- Problem of size n-1
- O(n²)

Quicksort: Potential Pivot Rules

While sorting arr from lo (inclusive) to hi (exclusive):

- Pick arr[lo] or arr[hi-1]
- Fast, but worst-case occurs with approximately sorted input
- Pick random element in the range
- Does as well as any technique
- But random number generation can be slow
- Still probably the most elegant approach
- Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo) /2])
- Common heuristic that tends to work well

Partitioning

- Conceptually simple, but hardest part to code up correctly
- After picking pivot, need to partition in linear time in place
- One approach (there are slightly fancier ones):

1. Swap pivot with arr [lo]
2. Use two fingers \mathbf{i} and j , starting at $\mathrm{lo}+1$ and $\mathrm{hi}-1$
3. while (i < j)

$$
\begin{aligned}
& \text { if (arr[j] >= pivot) j-- } \\
& \text { else if (arr[i] =< pivot) i++ } \\
& \text { else swap arr[i] with arr[j] }
\end{aligned}
$$

4. Swap pivot with arr [i]

Quicksort Example

- Step One: Pick Pivot as Median of 3
- $\mathrm{lo}=0, \mathrm{hi}=10$

0	1	2	3	4	5	6	7	8

- Step Two: Move Pivot to the 1o Position

Often have more than

Quicksort Example

 one swap during partition this is a short exampleNow partition in place

6	1	4	9	0	3	5	2	7	8

Move fingers

\[

\]

Move fingers

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 1 & 4 & 2 & 0 & 3 & 5 & 9 & 7 & 8 \\
\hline
\end{array}
$$

Move pivot

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 5 & 1 & 4 & 2 & 0 & 3 & 6 & 9 & 7 & 8 \\
\hline
\end{array}
$$

Quicksort Analysis

- Best-case: Pivot is always the median
$\mathrm{T}(0)=\mathrm{T}(1)=1$
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n \quad$-- linear-time partition
Same recurrence as mergesort: $O(n \log n)$
- Worst-case: Pivot is always smallest or largest element

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=1 \\
& \mathrm{~T}(n)=1 \mathrm{~T}(n-1)+n
\end{aligned}
$$

Basically same recurrence as selection sort: $O\left(n^{2}\right)$

- Average-case (e.g., with random pivot)
- O($n \log n$) (see text)

