
CSE332: Data Abstractions

Lecture 10: Comparison Sorting

James Fogarty

Winter 2012

Introduction to Sorting

• We have covered stacks, queues, priority queues, and dictionaries

– All focused on providing one element at a time

• But often we know we want “all the things” in some order

– Anyone can sort, but a computer can sort faster

– Very common to need data sorted somehow

• Alphabetical list of people

• List of countries ordered by population

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios

– Knowing “one way to sort” is not sufficient

More Reasons to Sort

General technique in computing:

 Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change

– How much data there is

Careful Statement of the Basic Problem
Assume we have n comparable elements in an array,

and we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record (potentially a set of fields)

– A comparison function (must be consistent and total)

• Given keys a and b, what is their relative ordering? <, =, >?

Effect:

– Reorganize the elements of A such that for any i and j,

 if i < j then A[i]  A[j]

– Unspoken assumption: A must have all the data it started with

An algorithm doing this is a comparison sort

Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and

back in linear time, but some algorithms need not do so)

2. Maybe ties need to be resolved by “original array position”

– Sorts that do this naturally are called stable sorts

– Others could tag each item with its original position and

adjust their comparisons (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Insertion Sort

• Idea: At step k,

 put the kth input element in the correct position

 among the first k elements

• Alternate way of saying this:

– Sort first element (this is easy)

– Now insert 2nd element in order

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?

 Best-case _____ Worst-case _____ “Average” case ____

Insertion Sort

• Idea: At step k,

 put the kth input element in the correct position

 among the first k elements

• Alternate way of saying this:

– Sort first element (this is easy)

– Now insert 2nd element in order

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Time?

 Best-case O(n) Worst-case O(n2) “Average” case O(n2)

 start sorted start reverse sorted (see text)

Selection Sort

• Idea: At step k,

 find the smallest element among the unsorted elements

 and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i,

first i elements are the i smallest elements in sorted order

• Time?

 Best-case _____ Worst-case _____ “Average” case ____

Selection Sort

• Idea: At step k,

 find the smallest element among the unsorted elements

 and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• “Loop invariant”: when loop index is i,

first i elements are the i smallest elements in sorted order

• Time?

 Best-case O(n2) Worst-case O(n2) “Average” case O(n2)

 Always T(1) = 1 and T(n) = n + T(n-1)

Mystery Sort

This is one implementation of which sorting algorithm (shown for ints)?

void mystery(int[] arr) {

 for(int i = 1; i < arr.length; i++) {

 int tmp = arr[i];

 int j;

 for(j=i; j > 0 && tmp < arr[j-1]; j--)

 arr[j] = arr[j-1];

 arr[j] = tmp;

 }

}

Note: As with heaps, “moving the hole” is faster than

 unnecessary swapping (impacts constant factor)

Insertion Sort vs. Selection Sort

• They are different algorithms

• They solve the same problem

• Have the same worst-case and average-case asymptotic complexity

– Insertion-sort has better best-case complexity;

preferable when input is “mostly sorted”

• Other algorithms are more efficient

for non-small arrays that are not already almost sorted

– Small arrays may do well with Insertion sort

Aside: We Will Not Cover Bubble Sort

• It does not have good asymptotic complexity: O(n2)

• It is not particularly efficient with respect to constant factors

• Almost everything it is good at,

some other algorithm is at least as good at

• Perhaps some people teach it just because it was taught to them

• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Heap Sort

• As you are seeing in Project 2, sorting with a heap is easy:

– insert each arr[i], or better yet do a buildHeap

– for(i=0; i < arr.length; i++)

 arr[i] = deleteMin();

• Worst-case running time:

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place

O(n log n)

 Why?

In-Place Heap Sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• That array location is not part of the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

But this reverse sorts –

how would you fix that?

Reverse your comparator,

so you build a maxHeap

“AVL sort”

• We can also use a balanced tree to:

– insert each element: total time O(n log n)

– Repeatedly deleteMin: total time O(n log n)

• But this cannot be made in-place,

and it has worse constant factors than heap sort

– both are O(n log n) in worst, best, and average case

– neither parallelizes well

– heap sort is better

• Do not even think about trying to sort with a hash table

Divide and Conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

 Sort the right half of the elements (recursively)

 Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element

 Divide elements into less-than pivot

 and greater-than pivot

 Sort the two divisions (recursively on each)

 Answer is [sorted-less-than,

 then pivot,

 then sorted-greater-than]

Mergesort

• To sort array from position lo to position hi:

– If range is 1 element long, it is already sorted! (our base case)

– Else, split into two halves:

• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…

8 2 9 4 5 3 1 6 a

 hi

 0 1 2 3 4 5 6 7

lo

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

 (After merge,

copy back to

original array)

aux

a

a

After recursion:

(for now we just

assume it works)

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

After recursion:

(for now we just

assume it works)

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

 (After merge,

copy back to

original array)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

 (After merge,

copy back to

original array)

After recursion:

(for now we just

assume it works)

aux

a

a

Example: Focus on Merging

Start with: 8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

 (After merge,

copy back to

original array)

1 2 3 4 5 6 8 9

After recursion:

(for now we just

assume it works)

aux

a

a

a

Example: Mergesort Recursion

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

Mergesort: Some Time Saving Details

• What if the final steps of our merge looked like this:

• Wasteful to copy to the auxiliary array just to copy back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

Mergesort: Some Time Saving Details

• If left-side finishes first, just stop the merge and copy back:

• If right-side finishes first, copy dregs into right then copy back:

copy

first

second

Mergesort: Saving Space and Copying

Simplest / Worst:

 Use a new auxiliary array of size (hi-lo) for every merge

Better:

 Use a new auxiliary array of size n for every merging stage

Better:

 Reuse same auxiliary array of size n for every merging stage

Best:

 Do not copy back after merge, instead swap usage of the

original and auxiliary array (i.e., even levels move to auxiliary

array, odd levels move back to original array)

– Need one copy at end if number of stages is odd

Swapping Original and Auxiliary Array

• First recurse down to lists of size 1

• As we return from the recursion, swap between arrays

• Arguably easier to code without using recursion at all

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

Mergesort Analysis

Having defined an algorithm and argued it is correct,

we can analyze its running time and space:

To sort n elements, we:

– Return immediately if n=1

– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

 T(1) = c1

 T(n) = 2T(n/2) + c2n

Mergesort Analysis

This recurrence is common enough you just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):

• The recursion “tree” will have log n height

• At each level we do a total amount of merging equal to n

Quicksort

• Also uses divide-and-conquer

– Recursively chop into halves

– Instead of doing all the work as we merge together,

we will do all the work as we recursively split into halves

– Unlike MergeSort, does not need auxiliary space

• O(n log n) on average, but O(n2) worst-case

– MergeSort is always O(n log n)

– So why use QuickSort at all?

• Can be faster than Mergesort

– Believed by many to be faster

– Quicksort does fewer copies and more comparisons,

so it depends on the relative cost of these two operations!

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is as simple as “A, B, C”

Alas, there are some details lurking in this algorithm

Quicksort: Think in Terms of Sets

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

57 26

75
0 S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
QuickSort(S1) and

QuickSort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

Example: Quicksort Recursion

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

Quicksort Details

We have not explained:

• How to pick the pivot element

– Any choice is correct: data will end up sorted

– But we want the two partitions to be about equal in size

• How to implement partitioning

– In linear time

– In place

Pivots

• Best pivot?

– Median

– Halve each time

• Worst pivot?

– Greatest/least element

– Problem of size n - 1

– O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

Quicksort: Potential Pivot Rules

While sorting arr from lo (inclusive) to hi (exclusive):

• Pick arr[lo] or arr[hi-1]

– Fast, but worst-case occurs with approximately sorted input

• Pick random element in the range

– Does as well as any technique

• But random number generation can be slow

• Still probably the most elegant approach

• Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2])

– Common heuristic that tends to work well

Partitioning

• Conceptually simple, but hardest part to code up correctly

– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]

2. Use two fingers i and j, starting at lo+1 and hi-1

3. while (i < j)

 if (arr[j] >= pivot) j--

 else if (arr[i] =< pivot) i++

 else swap arr[i] with arr[j]

4. Swap pivot with arr[i]

Quicksort Example

• Step One: Pick Pivot as Median of 3

– lo = 0, hi = 10

• Step Two: Move Pivot to the lo Position

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than

one swap during partition –

this is a short example

5 1 4 2 0 3 6 9 7 8

Quicksort Analysis

• Best-case: Pivot is always the median

 T(0)=T(1)=1

 T(n)=2T(n/2) + n -- linear-time partition

 Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1

 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– O(n log n) (see text)

