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Introduction to Sorting 

• We have covered stacks, queues, priority queues, and dictionaries 

– All focused on providing one element at a time 

 

• But often we know we want “all the things” in some order 

– Anyone can sort, but a computer can sort faster 

– Very common to need data sorted somehow 

• Alphabetical list of people 

• List of countries ordered by population 

 

• Algorithms have different asymptotic and constant-factor trade-offs 

– No single “best” sort for all scenarios 

– Knowing “one way to sort” is not sufficient 



More Reasons to Sort 

General technique in computing:  

 Preprocess data to make subsequent operations faster 

 

Example: Sort the data so that you can 

– Find the kth largest in constant time for any k 

– Perform binary search to find elements in logarithmic time 

 

Whether the performance of the preprocessing matters depends on 

– How often the data will change 

– How much data there is 



Careful Statement of the Basic Problem 
Assume we have n comparable elements in an array, 

and we want to rearrange them to be in increasing order 

 

Input: 

– An array A of data records 

– A key value in each data record (potentially a set of fields) 

– A comparison function (must be consistent and total) 

• Given keys a and b, what is their relative ordering?  <, =, >? 
 

Effect: 

– Reorganize the elements of A such that for any i and j,  

 if i < j then A[i]  A[j] 

– Unspoken assumption:  A must have all the data it started with 

 

An algorithm doing this is a comparison sort 



Variations on the basic problem 

1. Maybe elements are in a linked list (could convert to array and  

back in linear time, but some algorithms need not do so) 
 

2. Maybe ties need to be resolved by “original array position” 

– Sorts that do this naturally are called stable sorts 

– Others could tag each item with its original position and 

adjust their comparisons (non-trivial constant factors) 
 

3. Maybe we must not use more than O(1) “auxiliary space” 

– Sorts meeting this requirement are called in-place sorts 
 

4. Maybe we can do more with elements than just compare 

– Sometimes leads to faster algorithms 
 

5. Maybe we have too much data to fit in memory 

– Use an “external sorting” algorithm 



Sorting: The Big Picture 

Simple 

algorithms: 

O(n2) 

Fancier 

algorithms: 

O(n log n) 

Comparison 

lower bound: 

(n log n) 

Specialized 

algorithms: 

O(n) 

Handling 

huge data 

sets 

Insertion sort 

Selection sort 

Shell sort 

… 

Heap sort 

Merge sort 

Quick sort (avg) 

… 

Bucket sort 

Radix sort 

External 

sorting 



Insertion Sort 

• Idea:  At step k,  

 put the kth input element in the correct position 

 among the first k elements 
 

• Alternate way of saying this: 

– Sort first element (this is easy) 

– Now insert 2nd element in order 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 
 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 

 



Insertion Sort 

• Idea:  At step k,  

 put the kth input element in the correct position 

 among the first k elements 
 

• Alternate way of saying this: 

– Sort first element (this is easy) 

– Now insert 2nd element in order 

– Now insert 3rd element in order 

– Now insert 4th element in order 

– … 
 

• “Loop invariant”: when loop index is i, first i elements are sorted 
 

• Time?  

    Best-case   O(n)     Worst-case   O(n2)     “Average” case   O(n2) 

           start sorted           start reverse sorted       (see text)   



Selection Sort 

• Idea:  At step k,  

 find the smallest element among the unsorted elements 

 and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

• “Loop invariant”: when loop index is i,  

first i elements are the i smallest elements in sorted order 
 

• Time?  

    Best-case  _____     Worst-case  _____     “Average” case ____ 

 

 



Selection Sort 

• Idea:  At step k,  

 find the smallest element among the unsorted elements 

 and put it at position k 
 

• Alternate way of saying this: 

– Find smallest element, put it 1st 

– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd 

– … 
 

• “Loop invariant”: when loop index is i,  

first i elements are the i smallest elements in sorted order 
 

• Time?    

    Best-case  O(n2)    Worst-case O(n2)     “Average” case O(n2) 

         Always T(1) = 1 and T(n) = n + T(n-1) 

 

 



Mystery Sort 

This is one implementation of which sorting algorithm (shown for ints)? 

void mystery(int[] arr) { 

  for(int i = 1; i < arr.length; i++) { 

     int tmp = arr[i]; 

     int j; 

     for(j=i; j > 0 && tmp < arr[j-1]; j--) 

        arr[j] = arr[j-1]; 

     arr[j] = tmp; 

  } 

} 

Note:  As with heaps, “moving the hole” is faster than  

       unnecessary swapping (impacts constant factor) 



Insertion Sort vs. Selection Sort 

• They are different algorithms 

 

• They solve the same problem 

 

• Have the same worst-case and average-case asymptotic complexity 

– Insertion-sort has better best-case complexity;  

preferable when input is “mostly sorted” 

 

• Other algorithms are more efficient  

for non-small arrays that are not already almost sorted 

– Small arrays may do well with Insertion sort 

 



Aside: We Will Not Cover Bubble Sort 

• It does not have good asymptotic complexity: O(n2) 

 

• It is not particularly efficient with respect to constant factors 

 

• Almost everything it is good at,  

some other algorithm is at least as good at 

 

• Perhaps some people teach it just because it was taught to them 

 

 
• For fun see: “Bubble Sort: An Archaeological Algorithmic Analysis”, Owen Astrachan, SIGCSE 2003 
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Heap Sort 

• As you are seeing in Project 2, sorting with a heap is easy: 

– insert each arr[i], or better yet do a buildHeap 

– for(i=0; i < arr.length; i++)       

     arr[i] = deleteMin(); 

 

• Worst-case running time: 

 

 

• We have the array-to-sort and the heap 

– So this is not an in-place sort 

– There’s a trick to make it in-place 

O(n log n)   

  Why? 



In-Place Heap Sort 

– Treat the initial array as a heap (via buildHeap) 

– When you delete the ith  element, put it at arr[n-i] 

• That array location is not part of the heap anymore! 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 

deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

But this reverse sorts –  

how would you fix that? 

Reverse your comparator,  

so you build a maxHeap 



“AVL sort” 

• We can also use a balanced tree to: 

– insert each element: total time O(n log n) 

– Repeatedly deleteMin: total time O(n log n) 

 

• But this cannot be made in-place,  

and it has worse constant factors than heap sort 

– both are O(n log n) in worst, best, and average case 

– neither parallelizes well 

– heap sort is better 

 

• Do not even think about trying to sort with a hash table 

 



Divide and Conquer 

Very important technique in algorithm design 

 

1. Divide problem into smaller parts 

 

2. Independently solve the simpler parts 

– Think recursion 

– Or potential parallelism 

 

3. Combine solution of parts to produce overall solution 

 



Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 

 

1. Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 

      Merge the two sorted halves into a sorted whole 

 

2. Quicksort:    Pick a “pivot” element  

     Divide elements into less-than pivot  

       and greater-than pivot 

     Sort the two divisions (recursively on each) 

     Answer is [ sorted-less-than, 

   then pivot, 

  then sorted-greater-than  ] 

     

 



Mergesort 

• To sort array from position lo to position hi: 

– If range is 1 element long, it is already sorted! (our base case) 

– Else, split into two halves:  

• Sort from lo to (hi+lo)/2 

• Sort from (hi+lo)/2 to hi 

• Merge the two halves together 
 

• Merging takes two sorted parts and sorts everything 

– O(n) but requires auxiliary space… 

8 2 9 4 5 3 1 6 a 

 hi 

 0         1        2          3        4         5         6         7 

lo 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

    (After merge, 

copy back to 

original array) 

aux 

a 

a 

After recursion: 

(for now we just 

assume it works)   



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

After recursion: 

(for now we just 

assume it works)   

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 

    (After merge, 

copy back to 

original array) 

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 



Example: Focus on Merging 

Start with:  8 2 9 4 5 3 1 6 

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” 

and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 

copy back to 

original array) 

1 2 3 4 5 6 8 9 

After recursion: 

(for now we just 

assume it works)   

aux 

a 

a 

a 



Example: Mergesort Recursion 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8     2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 



Mergesort: Some Time Saving Details 

• What if the final steps of our merge looked like this: 

 

 

 

 

 

 

 

 

• Wasteful to copy to the auxiliary array just to copy back… 

2 4 5 6 1 3 8 9 

1 2 3 4 5 6 

Main array 

 

 

 

 

Auxiliary array 



Mergesort: Some Time Saving Details 

• If left-side finishes first, just stop the merge and copy back: 

 

 

 

 

 

• If right-side finishes first, copy dregs into right then copy back: 

copy 

first 

second 



Mergesort: Saving Space and Copying 

Simplest / Worst:  

 Use a new auxiliary array of size (hi-lo) for every merge 
 

Better: 

 Use a new auxiliary array of size n for every merging stage 
 

Better: 

 Reuse same auxiliary array of size n for every merging stage 
 

Best: 

 Do not copy back after merge, instead swap usage of the 

original and auxiliary array (i.e., even levels move to auxiliary 

array, odd levels move back to original array) 

– Need one copy at end if number of stages is odd 



Swapping Original and Auxiliary Array 

• First recurse down to lists of size 1 

• As we return from the recursion, swap between arrays 

 

 

 

 

 

 

 

 

 

 

 

• Arguably easier to code without using recursion at all 

Merge by 1 

 

Merge by 2 

 

Merge by 4 

 

Merge by 8 

 

Merge by 16 

 

Copy if Needed 



Mergesort Analysis 

Having defined an algorithm and argued it is correct,  

we can analyze its running time and space: 

 

To sort n elements, we: 

– Return immediately if n=1 

– Else do 2 subproblems of size n/2 and then an O(n) merge 

 

Recurrence relation: 

  T(1) = c1 

      T(n) = 2T(n/2) + c2n 



Mergesort Analysis 

This recurrence is common enough you just “know” it’s O(n log n) 

 

Merge sort is relatively easy to intuit (best, worst, and average): 

• The recursion “tree” will have log n height 

• At each level we do a total amount of merging equal to n 



Quicksort 

• Also uses divide-and-conquer 

– Recursively chop into halves 

– Instead of doing all the work as we merge together,  

we will do all the work as we recursively split into halves 

– Unlike MergeSort, does not need auxiliary space 
 

• O(n log n) on average, but O(n2) worst-case 

– MergeSort is always O(n log n) 

– So why use QuickSort at all? 
 

• Can be faster than Mergesort 

– Believed by many to be faster 

– Quicksort does fewer copies and more comparisons,  

so it depends on the relative cost of these two operations! 



Quicksort Overview 

1. Pick a pivot element 

 

2. Partition all the data into: 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

 

3. Recursively sort A and C 

 

4. The answer is as simple as “A, B, C”  

 

Alas, there are some details lurking in this algorithm 

 

 



Quicksort: Think in Terms of Sets 

13 
81 

92 

43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 
81 

92 

43 65 
31 

57 26 

75 
0 S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
QuickSort(S1) and 

QuickSort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



Example: Quicksort Recursion 

2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 



Quicksort Details 

We have not explained: 

 

• How to pick the pivot element 

– Any choice is correct: data will end up sorted 

– But we want the two partitions to be about equal in size 

 

• How to implement partitioning 

– In linear time 

– In place 



Pivots 

• Best pivot? 

– Median 

– Halve each time 

 

 

 

• Worst pivot? 

– Greatest/least element 

– Problem of size n - 1 

– O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 



Quicksort: Potential Pivot Rules 

While sorting arr from lo (inclusive) to hi (exclusive): 

 

• Pick arr[lo] or arr[hi-1] 

– Fast, but worst-case occurs with approximately sorted input 

 

• Pick random element in the range 

– Does as well as any technique 

• But random number generation can be slow 

• Still probably the most elegant approach 

 

• Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]) 

– Common heuristic that tends to work well 



Partitioning 

• Conceptually simple, but hardest part to code up correctly 

– After picking pivot, need to partition in linear time in place 

 

• One approach (there are slightly fancier ones): 

1. Swap pivot with arr[lo] 

2. Use two fingers i and j, starting at lo+1 and hi-1 

3. while (i < j) 

   if (arr[j] >= pivot) j-- 

   else if (arr[i] =< pivot) i++ 

   else swap arr[i] with arr[j] 

4. Swap pivot with arr[i] 



Quicksort Example 

• Step One: Pick Pivot as Median of 3 

– lo = 0, hi = 10 

 

 

• Step Two: Move Pivot to the lo Position 

 

6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



Quicksort Example 

Now partition in place 

 

 

Move fingers 

 

 

Swap 

 

Move fingers 

 

 

Move pivot 

 

6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  

one swap during partition –  

this is a short example 

5 1 4 2 0 3 6 9 7 8 



Quicksort Analysis 

• Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n           -- linear-time partition 

  Same recurrence as mergesort: O(n log n) 

 

• Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 

              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 

 

• Average-case (e.g., with random pivot) 

– O(n log n) (see text) 

 


