CSE332: Data Abstractions
Lecture 11: Beyond Comparison Sorting

James Fogarty
Winter 2012

Sorting: The Big Picture

Simple
algorithms:
$\mathbf{O}\left(n^{2}\right)$

\square

Insertion sort Selection sort Shell sort
Fancier
algorithms:
$\mathbf{O}(n \log n)$

Heap sort
Merge sort Quick sort (avg)

Bucket sort
Radix sort

Handling huge data sets

External sorting

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively) Sort the right half of the elements (recursively) Merge the two sorted halves into a sorted whole
2. Quicksort: Pick a "pivot" element

Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is [sorted-less-than, then pivot, then sorted-greater-than

Quicksort Analysis

- Best-case: Pivot is always the median
$\mathrm{T}(0)=\mathrm{T}(1)=1$
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n \quad$-- linear-time partition
Same recurrence as mergesort: $O(n \log n)$
- Worst-case: Pivot is always smallest or largest element

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{T}(1)=1 \\
& \mathrm{~T}(n)=1 \mathrm{~T}(n-1)+n
\end{aligned}
$$

Basically same recurrence as selection sort: $O\left(n^{2}\right)$

- Average-case (e.g., with random pivot)
- O($n \log n$) (see text)

Quicksort Cutoffs

- For small n, recursion tends to cost more than a quadratic sort
- Remember asymptotic complexity is for large n
- Also, recursive calls add a lot of overhead for small n
- Common technique: switch algorithm below a cutoff
- Reasonable rule of thumb: use insertion sort for $n<10$
- Notes:
- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms
- Switch to sequential algorithm
- None of this affects asymptotic complexity

Quicksort Cutoff Skeleton

```
void quicksort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
}
```

This cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Linked Lists and Big Data

We defined sorting over an array, but sometimes you want to sort lists
One approach:

- Convert to array: $O(n)$, Sort: $O(n \log n)$, Convert to list: $O(n)$

Mergesort can very nicely work directly on linked lists

- heapsort and quicksort do not
- insertion sort and selection sort can, but they are slower

Mergesort is also the sort of choice for external sorting

- Quicksort and Heapsort jump all over the array
- Mergesort scans linearly through arrays
- In-memory sorting of blocks can be combined with larger sorts
- Mergesort can leverage multiple disks

The Big Picture

Simple
algorithms:
$\mathbf{O}\left(\boldsymbol{n}^{2}\right)$

\square

Insertion sort Selection sort Shell sort

Heap sort
Merge sort Quick sort (avg)

Bucket sort
Radix sort

Handling huge data sets

External sorting

How Fast can we Sort?

- Heapsort \& Mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead we prove that this is impossible when the primary operation is comparison of pairs of elements

Permutations

- Assume we have n elements to sort
- And for simplicity, assume none are equal (i.e., no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, $n=3$

$$
\begin{array}{lll}
a[0]<a[1]<a[2] & a[0]<a[2]<a[1] & a[1]<a[0]<a[2] \\
a[1]<a[2]<a[0] & a[2]<a[0]<a[1] & a[2]<a[1]<a[0] \\
& 6 \text { possible orderings }
\end{array}
$$

- In general, n choices for first, n - 1 for next, $n-2$ for next, etc.
- $n(n-1)(n-2) \ldots(2)(1)=n!$ possible orderings

Representing Every Comparison Sort

- Algorithm must "find" the right answer among n! possible answers
- Starts "knowing nothing" and gains information with each comparison
- Intuition is that each comparison can, at best, eliminate half of the remaining possibilities
- Can represent this process as a decision tree
- Nodes contain "remaining possibilities"
- Edges are "answers from a comparison"
- This is not a data structure, it's what our proof uses to represent "the most any algorithm could know"

Decision Tree for $n=3$

The leaves contain all the possible orderings of a, b, c

What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
- No duplicate elements
- Assume algorithm not so dumb as to ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to decide among all n ! answers
- Every answer is a leaf (no more questions to ask)
- So the tree must be big enough to have n! leaves
- Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
- So no algorithm can have worst-case running time better than the height of the decision tree

Example

Where are We

Proven: No comparison sort can have worst-case better than: the height of a binary tree with n ! leaves

- Turns out average-case is same asymptotically
- So how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n ! leaves has height $\Omega(n \log n)$

- $\mathrm{n} \log \mathrm{n}$ is the lower bound, the height must be at least this
- It could be more (in other words, your comparison sorting algorithm could take longer than this, but can not be faster)
- Factorial function grows very quickly

Conclude that: (Comparison) Sorting is $\Omega(n \log n)$

- This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!

Lower Bound on Height

- The height of a binary tree with L leaves is at least $\log _{2} L$
- So the height of our decision tree, h :

$$
\begin{array}{rlrl}
h & \geq \log _{2}(n!) & & \text { property of binary trees } \\
& =\log _{2}\left(n^{*}(n-1)^{*}(n-2) \ldots(2)(1)\right) & & \text { definition of factorial } \\
& =\log _{2} n+\log _{2}(n-1)+\ldots+\log _{2} 1 & & \text { property of logarithms } \\
& \geq \log _{2} n+\log _{2}(n-1)+\ldots+\log _{2}(n / 2) & & \text { keep first } n / 2 \text { terms } \\
& \geq(n / 2) \log _{2}(n / 2) & \text { each of the } n / 2 \text { terms left is } \geq \log _{2}(n / 2) \\
& \geq(n / 2)\left(\log _{2} n-\log _{2} 2\right) & & \text { property of logarithms } \\
& \geq(1 / 2) n \log _{2} n-(1 / 2) n & & \text { arithmetic } \\
\text { " }=" \Omega(n \log n) & &
\end{array}
$$

The Big Picture

Simple
algorithms:
$\mathbf{O}\left(\boldsymbol{n}^{2}\right)$

\square

Insertion sort Selection sort Shell sort

Heap sort
Merge sort Quick sort (avg)

Bucket sort
Radix sort

Handling huge data sets

External sorting

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K
- Put each element in its proper bucket (a.ka. bin)
- If data is only integers, no need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	
2	
3	
4	
5	

Example:
$\mathrm{K}=5$
Input: (5,1,3,4,3,2,1,1,5,4,5)
Output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K
- Put each element in its proper bucket (a.ka. bin)
- If data is only integers, no need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

Example:

$\mathrm{K}=5$
Input (5, 1,3,4,3,2,1,1,5,4,5)
Output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K
- Put each element in its proper bucket (a.ka. bin)
- If data is only integers, no need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

> Example:
> $\quad \mathrm{K}=5$
> Input $(5,1,3,4,3,2,1,1,5,4,5)$
> Output: $1,1,1,2,3,3,4,4,5,5,5$

What is the running time?

Analyzing Bucket Sort

- Overall: $O(n+K)$
- Linear in n, but also linear in K
- $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
- Do not spend time doing comparisons of duplicates
- Bad when K is much larger than n
- Wasted space; wasted time during final linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- For data in addition to integer keys, use list at each bucket

count array		
Twilight		

- Bucket sort illustrates a more general trick
- Imagine a heap for a small range of integer priorities

Radix Sort

- Radix = "the base of a number system"
- Examples will use 10 because we are familiar with that
- In implementations use larger numbers
- For example, for ASCII strings, might use 128
- Idea:
- Bucket sort on one digit at a time
- Number of buckets = radix
- Starting with least significant digit, sort with Bucket Sort
- Keeping sort stable
- Do one pass per digit
- After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example: Radix Sort: Pass \#1

Input data

Bucket sort
by 1's digit

478
537
9
721
3
38
123
67

After $1^{\text {st }}$ pass

721
3

0	1	2	3	4	5	6	7	8	9
	$\mathbf{7 2} \underline{\underline{1}}$		$12 \underline{\underline{3}}$				$\mathbf{5 3} \underline{7}$	$\mathbf{4 7} \underline{\underline{8}}$	$\underline{9}$
							$\underline{\underline{z}}$	$\underline{8}$	

123
537
67
478
38
9

This example uses $B=10$ and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Example: Radix Sort: Pass \#2

After $1^{\text {st }}$ pass
721
3
123
537
67
478
38
9

Bucket sort
by 10 's digit

0	1	2	3	4	5	6	7	8	9
$\underline{\mathbf{0 3}}$		$\underline{72} \underline{1}$	$\mathbf{5 3} \underline{3}$			$\underline{67}$	$\mathbf{4} \underline{78}$		
$\underline{09}$		$\underline{12} 3$	$\underline{3} 8$						

After $2^{\text {nd }}$ pass
3
9
721
123
537
38
67
478

Example: Radix Sort: Pass \#3

Invariant: after k passes the low order k digits are sorted.

Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = "Digits": P
Work per pass is 1 bucket sort: $O(B+n)$
Total work is $O(P(B+n))$
Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
$-15^{*}(52+n)$
- This is less than n log n only if $n>33,000$
- Of course, cross-over point depends on constant factors of the implementations

Last Slide on Sorting

- Simple $O\left(n^{2}\right)$ sorts can be fastest for small n
- selection sort, insertion sort (which is linear for mostly-sorted)
- good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
- heap sort, in-place but not stable nor parallelizable
- merge sort, not in place but stable and works as external sort
- quick sort, in place but not stable and $O\left(n^{2}\right)$ in worst-case
- often fastest, but depends on costs of comparisons/copies
- $\boldsymbol{\Omega}(n \log n)$ worst and average bound for comparison sorting
- Non-comparison sorts
- Bucket sort good for small number of key values
- Radix sort uses fewer buckets and more phases
- Best way to sort?

It depends!

