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Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 

 

1. Mergesort:     Sort the left half of the elements (recursively) 

         Sort the right half of the elements (recursively) 

      Merge the two sorted halves into a sorted whole 

 

2. Quicksort:    Pick a “pivot” element  

     Divide elements into less-than pivot  

       and greater-than pivot 

     Sort the two divisions (recursively on each) 

     Answer is [ sorted-less-than, 

   then pivot, 

  then sorted-greater-than  ] 

     

 



Quicksort Analysis 

• Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n           -- linear-time partition 

  Same recurrence as mergesort: O(n log n) 

 

• Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 

              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 

 

• Average-case (e.g., with random pivot) 

– O(n log n) (see text) 

 



Quicksort Cutoffs 

• For small n, recursion tends to cost more than a quadratic sort 

– Remember asymptotic complexity is for large n 

– Also, recursive calls add a lot of overhead for small n 

 

• Common technique: switch algorithm below a cutoff 

– Reasonable rule of thumb: use insertion sort for n < 10 

 

• Notes: 

– Could also use a cutoff for merge sort 

– Cutoffs are also the norm with parallel algorithms  

• Switch to sequential algorithm 

– None of this affects asymptotic complexity 



Quicksort Cutoff Skeleton 

void quicksort(int[] arr, int lo, int hi) { 

  if(hi – lo < CUTOFF) 

     insertionSort(arr,lo,hi); 

  else 

     … 

} 

This cuts out the vast majority of the recursive calls  

–   Think of the recursive calls to quicksort as a tree 

–   Trims out the bottom layers of the tree 



Linked Lists and Big Data 

We defined sorting over an array, but sometimes you want to sort lists 
 

One approach: 

– Convert to array: O(n), Sort: O(n log n), Convert to list: O(n) 
 

Mergesort can very nicely work directly on linked lists 

– heapsort and quicksort do not 

– insertion sort and selection sort can, but they are slower 
 

Mergesort is also the sort of choice for external sorting 

– Quicksort and Heapsort jump all over the array 

– Mergesort scans linearly through arrays 

– In-memory sorting of blocks can be combined with larger sorts 

– Mergesort can leverage multiple disks 
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How Fast can we Sort? 

• Heapsort & Mergesort have O(n log n) worst-case running time 

 

• Quicksort has O(n log n) average-case running times 

 

• These bounds are all tight, actually (n log n) 

 

• So maybe we need to dream up another algorithm with a lower 
asymptotic complexity, such as O(n) or O(n  log log n) 

– Instead we prove that this is impossible when the primary 

operation is comparison of pairs of elements 



Permutations 

• Assume we have n elements to sort  

– And for simplicity, assume none are equal (i.e., no duplicates) 

 

• How many permutations of the elements (possible orderings)? 

 

• Example, n=3 

  a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] 

      a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0] 

      6 possible orderings 

 

• In general, n choices for first, n-1 for next, n-2 for next, etc. 

– n(n-1)(n-2)…(2)(1) = n! possible orderings 

 



Representing Every Comparison Sort 

• Algorithm must “find” the right answer among n! possible answers 

 

• Starts “knowing nothing” and gains information with each comparison 

– Intuition is that each comparison can, at best, 

eliminate half of the remaining possibilities 

 

• Can represent this process as a decision tree 

– Nodes contain “remaining possibilities” 

– Edges are “answers from a comparison” 

– This is not a data structure, it’s what our proof uses  

to represent “the most any algorithm could know” 



Decision Tree for n = 3 

a < b < c, b < c < a, 

a < c < b, c < a < b, 

b < a < c, c < b < a  

a < b < c 

a < c < b 

c < a < b 

b < a < c  

b < c < a 

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  

b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

a ? b 

The leaves contain all the possible orderings of a, b, c 



What the Decision Tree Tells Us 

• A binary tree because each comparison has 2 outcomes 

– No duplicate elements 

– Assume algorithm not so dumb as to ask redundant questions 

 

• Because any data is possible, any algorithm needs to ask enough 

questions to decide among all n! answers 

– Every answer is a leaf (no more questions to ask) 

– So the tree must be big enough to have n! leaves 

– Running any algorithm on any input will at best  

correspond to one root-to-leaf path in the decision tree 

– So no algorithm can have worst-case running time  

better than the height of the decision tree 



Example 

a < b < c, b < c < a, 

a < c < b, c < a < b, 

b < a < c, c < b < a  

a < b < c 

a < c < b 

c < a < b 

b < a < c  

b < c < a 

c < b < a 

a < b < c 

a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  

b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

a ? b 

possible orders 

actual order 



Where are We 

Proven: No comparison sort can have worst-case better than:  

   the height of a binary tree with n! leaves 

– Turns out average-case is same asymptotically 

– So how tall is a binary tree with n! leaves? 

 

Now: Show that a binary tree with n! leaves has height (n log n) 

– n log n is the lower bound, the height must be at least this 

– It could be more (in other words, your comparison sorting 

algorithm could take longer than this, but can not be faster) 

– Factorial function grows very quickly 

 

Conclude that: (Comparison) Sorting is  (n log n) 

– This is an amazing computer-science result: proves all the 

clever programming in the world can’t sort in linear time! 



Lower Bound on Height 

• The height of a binary tree with L leaves is at least log2 L 
 

• So the height of our decision tree, h: 
 

   h  log2 (n!)                                                  property of binary trees 

      = log2 (n*(n-1)*(n-2)…(2)(1))         definition of factorial 

      = log2 n + log2 (n-1) + … + log2 1         property of logarithms 

       log2 n + log2 (n-1) + … + log2 (n/2)    keep first n/2 terms 

        (n/2) log2 (n/2)          each of the n/2 terms left is  log2 (n/2) 

   (n/2)(log2 n - log2 2)          property of logarithms 

   (1/2)nlog2 n – (1/2)n       arithmetic 

      “=“  (n log n) 
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BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers  

between 1 and K (or any small range),  

– Create an array of size K  

– Put each element in its proper bucket (a.ka. bin) 

– If data is only integers, no need to store anything more  

than a count of how times that bucket has been used 

• Output result via linear pass through array of buckets 

count array 

1 

2 

3 

4 

5 

Example:  

K=5 

Input:  (5,1,3,4,3,2,1,1,5,4,5) 

   Output: 



BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers  

between 1 and K (or any small range),  

– Create an array of size K  

– Put each element in its proper bucket (a.ka. bin) 

– If data is only integers, no need to store anything more  

than a count of how times that bucket has been used 

• Output result via linear pass through array of buckets 

count array 

1 3 

2 1 

3 2 

4 2 

5 3 

Example:  

K=5 

Input (5,1,3,4,3,2,1,1,5,4,5) 

   Output: 



BucketSort (a.k.a. BinSort) 

• If all values to be sorted are known to be integers  

between 1 and K (or any small range),  

– Create an array of size K  

– Put each element in its proper bucket (a.ka. bin) 

– If data is only integers, no need to store anything more  

than a count of how times that bucket has been used 

• Output result via linear pass through array of buckets 

count array 

1 3 

2 1 

3 2 

4 2 

5 3 

Example:  

K=5 

Input (5,1,3,4,3,2,1,1,5,4,5) 

   Output: 1,1,1,2,3,3,4,4,5,5,5 

What is the running time? 



Analyzing Bucket Sort 

• Overall: O(n+K) 

– Linear in n, but also linear in K 

– (n log n) lower bound does not apply  

because this is not a comparison sort 

 

• Good when K is smaller (or not much larger) than n 

– Do not spend time doing comparisons of duplicates 

 

• Bad when K is much larger than n 

– Wasted space; wasted time during final linear O(K) pass 

 

• For data in addition to integer keys, use list at each bucket 

 



Bucket Sort with Data 

• For data in addition to integer keys, use list at each bucket 

 

 

 

 

 

 

 

 

 

• Bucket sort illustrates a more general trick 

– Imagine a heap for a small range of integer priorities 

count array 

1 

2 

3 

4 

5 

Twilight 

Harry Potter 

Gattaca Star Wars 



Radix Sort 

• Radix = “the base of a number system” 

– Examples will use 10 because we are familiar with that 

– In implementations use larger numbers 

• For example, for ASCII strings, might use 128 

 

• Idea: 

– Bucket sort on one digit at a time 

• Number of buckets = radix 

• Starting with least significant digit, sort with Bucket Sort 

• Keeping sort stable 

– Do one pass per digit 

– After k passes, the last k digits are sorted 
 

 

• Aside: Origins go back to the 1890 U.S. census 



67 

123 

38 

3 

721 

9 

537 

478 

Bucket sort  

by 1’s digit 

0 1 

721 

2 3 

3 

123 

4 5 6 7 

537 

67 

8 

478 

38 

9 

9 

Input data 

This example uses B=10 and base 10 

digits for simplicity of demonstration.  

Larger bucket counts should be used in 

an actual implementation. 

Example: Radix Sort: Pass #1 

721 

3 

123 

537 

67 

478 

38 

9 

After 1st pass 



Bucket sort  

by 10’s digit 

0 

03 

09 

1 2 

721 

123 

 

3 

537 

38 

4 5 6 

67 

7 

478 

8 

 

 

9 

Example: Radix Sort: Pass #2 

721 

3 

123 

537 

67 

478 

38 

9 

After 1st pass After 2nd pass 
3 

9 

721 

123 

537 

38 

67 

478 



Bucket sort  

by 100’s digit 

0 

003 

009 

038 

067 

1 

123 

2 

 

 

 

3 

 

 

4 

478 

5 

537 

6 7 

721 

8 

 

 

9 

Example: Radix Sort: Pass #3 

After 2nd pass 
3 

9 

721 

123 

537 

38 

67 

478 

After 3rd pass 
3 

9 

38 

67 

123 

478 

537 

721 

Invariant: after k passes the low order k digits are sorted. 



Analysis 

Input size: n 

Number of buckets = Radix: B 

Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 

• Example: Strings of English letters up to length 15 

– 15*(52 + n)  

– This is less than n log n only if n > 33,000 

• Of course, cross-over point depends on  

constant factors of the implementations  

 



Last Slide on Sorting 

• Simple O(n2) sorts can be fastest for small n 

– selection sort, insertion sort (which is linear for mostly-sorted) 

– good for “below a cut-off” to help divide-and-conquer sorts 

• O(n log n) sorts 

– heap sort, in-place but not stable nor parallelizable 

– merge sort, not in place but stable and works as external sort 

– quick sort, in place but not stable and O(n2) in worst-case 

• often fastest, but depends on costs of comparisons/copies 

•  (n log n) worst and average bound for comparison sorting 

• Non-comparison sorts 

– Bucket sort good for small number of key values 

– Radix sort uses fewer buckets and more phases 

 

• Best way to sort?     It depends! 


