
CSE332: Data Abstractions

Lecture 11: Beyond Comparison Sorting

James Fogarty

Winter 2012

Sorting: The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

 Sort the right half of the elements (recursively)

 Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element

 Divide elements into less-than pivot

 and greater-than pivot

 Sort the two divisions (recursively on each)

 Answer is [sorted-less-than,

 then pivot,

 then sorted-greater-than]

Quicksort Analysis

• Best-case: Pivot is always the median

 T(0)=T(1)=1

 T(n)=2T(n/2) + n -- linear-time partition

 Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1

 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– O(n log n) (see text)

Quicksort Cutoffs

• For small n, recursion tends to cost more than a quadratic sort

– Remember asymptotic complexity is for large n

– Also, recursive calls add a lot of overhead for small n

• Common technique: switch algorithm below a cutoff

– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:

– Could also use a cutoff for merge sort

– Cutoffs are also the norm with parallel algorithms

• Switch to sequential algorithm

– None of this affects asymptotic complexity

Quicksort Cutoff Skeleton

void quicksort(int[] arr, int lo, int hi) {

 if(hi – lo < CUTOFF)

 insertionSort(arr,lo,hi);

 else

 …

}

This cuts out the vast majority of the recursive calls

– Think of the recursive calls to quicksort as a tree

– Trims out the bottom layers of the tree

Linked Lists and Big Data

We defined sorting over an array, but sometimes you want to sort lists

One approach:

– Convert to array: O(n), Sort: O(n log n), Convert to list: O(n)

Mergesort can very nicely work directly on linked lists

– heapsort and quicksort do not

– insertion sort and selection sort can, but they are slower

Mergesort is also the sort of choice for external sorting

– Quicksort and Heapsort jump all over the array

– Mergesort scans linearly through arrays

– In-memory sorting of blocks can be combined with larger sorts

– Mergesort can leverage multiple disks

The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How Fast can we Sort?

• Heapsort & Mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running times

• These bounds are all tight, actually (n log n)

• So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log n)

– Instead we prove that this is impossible when the primary

operation is comparison of pairs of elements

Permutations

• Assume we have n elements to sort

– And for simplicity, assume none are equal (i.e., no duplicates)

• How many permutations of the elements (possible orderings)?

• Example, n=3

 a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

 a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

 6 possible orderings

• In general, n choices for first, n-1 for next, n-2 for next, etc.

– n(n-1)(n-2)…(2)(1) = n! possible orderings

Representing Every Comparison Sort

• Algorithm must “find” the right answer among n! possible answers

• Starts “knowing nothing” and gains information with each comparison

– Intuition is that each comparison can, at best,

eliminate half of the remaining possibilities

• Can represent this process as a decision tree

– Nodes contain “remaining possibilities”

– Edges are “answers from a comparison”

– This is not a data structure, it’s what our proof uses

to represent “the most any algorithm could know”

Decision Tree for n = 3

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

 b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

a ? b

The leaves contain all the possible orderings of a, b, c

What the Decision Tree Tells Us

• A binary tree because each comparison has 2 outcomes

– No duplicate elements

– Assume algorithm not so dumb as to ask redundant questions

• Because any data is possible, any algorithm needs to ask enough

questions to decide among all n! answers

– Every answer is a leaf (no more questions to ask)

– So the tree must be big enough to have n! leaves

– Running any algorithm on any input will at best

correspond to one root-to-leaf path in the decision tree

– So no algorithm can have worst-case running time

better than the height of the decision tree

Example

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

 b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

a ? b

possible orders

actual order

Where are We

Proven: No comparison sort can have worst-case better than:

 the height of a binary tree with n! leaves

– Turns out average-case is same asymptotically

– So how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height (n log n)

– n log n is the lower bound, the height must be at least this

– It could be more (in other words, your comparison sorting

algorithm could take longer than this, but can not be faster)

– Factorial function grows very quickly

Conclude that: (Comparison) Sorting is  (n log n)

– This is an amazing computer-science result: proves all the

clever programming in the world can’t sort in linear time!

Lower Bound on Height

• The height of a binary tree with L leaves is at least log2 L

• So the height of our decision tree, h:

 h  log2 (n!) property of binary trees

 = log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

 = log2 n + log2 (n-1) + … + log2 1 property of logarithms

  log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2 terms

  (n/2) log2 (n/2) each of the n/2 terms left is  log2 (n/2)

  (n/2)(log2 n - log2 2) property of logarithms

  (1/2)nlog2 n – (1/2)n arithmetic

 “=“  (n log n)

The Big Picture

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers

between 1 and K (or any small range),

– Create an array of size K

– Put each element in its proper bucket (a.ka. bin)

– If data is only integers, no need to store anything more

than a count of how times that bucket has been used

• Output result via linear pass through array of buckets

count array

1

2

3

4

5

Example:

K=5

Input: (5,1,3,4,3,2,1,1,5,4,5)

 Output:

BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers

between 1 and K (or any small range),

– Create an array of size K

– Put each element in its proper bucket (a.ka. bin)

– If data is only integers, no need to store anything more

than a count of how times that bucket has been used

• Output result via linear pass through array of buckets

count array

1 3

2 1

3 2

4 2

5 3

Example:

K=5

Input (5,1,3,4,3,2,1,1,5,4,5)

 Output:

BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers

between 1 and K (or any small range),

– Create an array of size K

– Put each element in its proper bucket (a.ka. bin)

– If data is only integers, no need to store anything more

than a count of how times that bucket has been used

• Output result via linear pass through array of buckets

count array

1 3

2 1

3 2

4 2

5 3

Example:

K=5

Input (5,1,3,4,3,2,1,1,5,4,5)

 Output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

Analyzing Bucket Sort

• Overall: O(n+K)

– Linear in n, but also linear in K

– (n log n) lower bound does not apply

because this is not a comparison sort

• Good when K is smaller (or not much larger) than n

– Do not spend time doing comparisons of duplicates

• Bad when K is much larger than n

– Wasted space; wasted time during final linear O(K) pass

• For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

• For data in addition to integer keys, use list at each bucket

• Bucket sort illustrates a more general trick

– Imagine a heap for a small range of integer priorities

count array

1

2

3

4

5

Twilight

Harry Potter

Gattaca Star Wars

Radix Sort

• Radix = “the base of a number system”

– Examples will use 10 because we are familiar with that

– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:

– Bucket sort on one digit at a time

• Number of buckets = radix

• Starting with least significant digit, sort with Bucket Sort

• Keeping sort stable

– Do one pass per digit

– After k passes, the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census

67

123

38

3

721

9

537

478

Bucket sort

by 1’s digit

0 1

721

2 3

3

123

4 5 6 7

537

67

8

478

38

9

9

Input data

This example uses B=10 and base 10

digits for simplicity of demonstration.

Larger bucket counts should be used in

an actual implementation.

Example: Radix Sort: Pass #1

721

3

123

537

67

478

38

9

After 1st pass

Bucket sort

by 10’s digit

0

03

09

1 2

721

123

3

537

38

4 5 6

67

7

478

8

9

Example: Radix Sort: Pass #2

721

3

123

537

67

478

38

9

After 1st pass After 2nd pass
3

9

721

123

537

38

67

478

Bucket sort

by 100’s digit

0

003

009

038

067

1

123

2

3

4

478

5

537

6 7

721

8

9

Example: Radix Sort: Pass #3

After 2nd pass
3

9

721

123

537

38

67

478

After 3rd pass
3

9

38

67

123

478

537

721

Invariant: after k passes the low order k digits are sorted.

Analysis

Input size: n

Number of buckets = Radix: B

Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

• Example: Strings of English letters up to length 15

– 15*(52 + n)

– This is less than n log n only if n > 33,000

• Of course, cross-over point depends on

constant factors of the implementations

Last Slide on Sorting

• Simple O(n2) sorts can be fastest for small n

– selection sort, insertion sort (which is linear for mostly-sorted)

– good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts

– heap sort, in-place but not stable nor parallelizable

– merge sort, not in place but stable and works as external sort

– quick sort, in place but not stable and O(n2) in worst-case

• often fastest, but depends on costs of comparisons/copies

•  (n log n) worst and average bound for comparison sorting

• Non-comparison sorts

– Bucket sort good for small number of key values

– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!

