

CSE332: Data Abstractions Lecture 11: Beyond Comparison Sorting

James Fogarty Winter 2012

Sorting: The Big Picture

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

- Mergesort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole
- Quicksort: Pick a "pivot" element
 Divide elements into less-than pivot and greater-than pivot
 Sort the two divisions (recursively on each)
 Answer is [sorted-less-than, then pivot, then sorted-greater-than

Quicksort Analysis

• Best-case: Pivot is always the median

T(0)=T(1)=1 T(n)=2T(n/2) + n -- linear-time partition Same recurrence as mergesort: $O(n \log n)$

- Worst-case: Pivot is always smallest or largest element T(0)=T(1)=1 T(n) = 1T(n-1) + n Basically same recurrence as selection sort: O(n²)
- Average-case (e.g., with random pivot)
 - $O(n \log n)$ (see text)

Quicksort Cutoffs

- For small *n*, recursion tends to cost more than a quadratic sort
 - Remember asymptotic complexity is for large *n*
 - Also, recursive calls add a lot of overhead for small n
- Common technique: switch algorithm below a cutoff
 - Reasonable rule of thumb: use insertion sort for n < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - Switch to sequential algorithm
 - None of this affects asymptotic complexity

Quicksort Cutoff Skeleton

```
void quicksort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
        ...
}</pre>
```

This cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Linked Lists and Big Data

We defined sorting over an array, but sometimes you want to sort lists

One approach:

- Convert to array: O(n), Sort: $O(n \log n)$, Convert to list: O(n)

Mergesort can very nicely work directly on linked lists

- heapsort and quicksort do not
- insertion sort and selection sort can, but they are slower

Mergesort is also the sort of choice for external sorting

- Quicksort and Heapsort jump all over the array
- Mergesort scans linearly through arrays
- In-memory sorting of blocks can be combined with larger sorts
- Mergesort can leverage multiple disks

The Big Picture

How Fast can we Sort?

- Heapsort & Mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead we prove that this is impossible when the primary operation is comparison of pairs of elements

Permutations

- Assume we have *n* elements to sort
 - And for simplicity, assume none are equal (i.e., no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, n=3

 a[0]<a[1]<a[2]
 a[0]<a[2]<a[1]
 a[1]<a[2]
 a[2]<a[0]
 a[1]<a[2]
 a[2]<a[0]
 a[2]<a[1]
 a[2]<a[0]
 a[2]<a[1]
 a[2]<a[2]
 a[1]
 a[2]<a[2]
 a[1]
 a[2]<a[2]
 a[2]<a[2]
 a[2]<a[2]
 a[1]
 a[2]<a[2]
 a[2]<a[2]</l
- In general, n choices for first, n-1 for next, n-2 for next, etc.
 n(n-1)(n-2)...(2)(1) = n! possible orderings

Representing Every Comparison Sort

- Algorithm must "find" the right answer among n! possible answers
- Starts "knowing nothing" and gains information with each comparison
 - Intuition is that each comparison can, at best, eliminate half of the remaining possibilities
- Can represent this process as a decision tree
 - Nodes contain "remaining possibilities"
 - Edges are "answers from a comparison"
 - This is not a data structure, it's what our proof uses to represent "the most any algorithm could know"

Decision Tree for n = 3

The leaves contain all the possible orderings of a, b, c

What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - No duplicate elements
 - Assume algorithm not so dumb as to ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to decide among all n! answers
 - Every answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

Where are We

Proven: No comparison sort can have worst-case better than: the height of a binary tree with *n*! leaves

- Turns out average-case is same asymptotically
- So how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height $\Omega(n \log n)$

- n log n is the lower bound, the height must be at least this
- It could be more (in other words, your comparison sorting algorithm could take longer than this, but can not be faster)
- Factorial function grows very quickly

Conclude that: (Comparison) Sorting is Ω (*n* log *n*)

– This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!

Lower Bound on Height

- The height of a binary tree with L leaves is at least $log_2 L$
- So the height of our decision tree, *h*:

$$h \ge \log_2 (n!)$$

$$= \log_2 (n^*(n-1)^*(n-2)...(2)(1))$$

$$= \log_2 n + \log_2 (n-1) + ... + \log_2 1$$

$$\geq \log_2 n + \log_2 (n-1) + ... + \log_2 (n/2)$$

$$\geq (n/2) \log_2 (n/2)$$

$$\Rightarrow (n/2) \log_2 (n/2)$$

$$\Rightarrow (n/2)(\log_2 n - \log_2 2)$$

$$\Rightarrow (1/2) \log_2 n - (1/2)n$$

$$\Rightarrow (n/2)(\log_2 n - (1/2)n)$$

The Big Picture

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and *K* (or any small range),
 - Create an array of size K
 - Put each element in its proper bucket (a.ka. bin)
 - If data is only integers, no need to store anything more than a *count* of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	
2	
3	
4	
5	

Example:

K=5 Input: (5,1,3,4,3,2,1,1,5,4,5) Output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and *K* (or any small range),
 - Create an array of size K
 - Put each element in its proper bucket (a.ka. bin)
 - If data is only integers, no need to store anything more than a *count* of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

Example:

K=5 Input (5,1,3,4,3,2,1,1,5,4,5) Output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and *K* (or any small range),
 - Create an array of size K
 - Put each element in its proper bucket (a.ka. bin)
 - If data is only integers, no need to store anything more than a *count* of how times that bucket has been used
- Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

Example:

K=5 Input (5,1,3,4,3,2,1,1,5,4,5) Output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

Analyzing Bucket Sort

- Overall: *O*(*n*+*K*)
 - Linear in *n*, but also linear in *K*
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than *n*
 - Do not spend time doing comparisons of duplicates
- Bad when *K* is much larger than *n*
 - Wasted space; wasted time during final linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

• For data in addition to integer keys, use list at each bucket

- Bucket sort illustrates a more general trick
 - Imagine a heap for a small range of integer priorities

Radix Sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are familiar with that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After *k* passes, the last *k* digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example: Radix Sort: Pass #1

Bucket sort by 1's digit

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Example: Radix Sort: Pass #2

Example: Radix Sort: Pass #3

Invariant: after k passes the low order k digits are sorted.

Analysis

Input size: *n* Number of buckets = Radix: *B* Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - 15*(52 + *n*)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (which is linear for mostly-sorted)
 - good for "below a cut-off" to help divide-and-conquer sorts
- *O*(*n* log *n*) sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- Ω (*n* log *n*) worst and average bound for comparison sorting
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort?

It depends!