

CSE332: Data Abstractions Lecture 12: Graphs

James Fogarty
Winter 2012

Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair

$$G = (V, E)$$

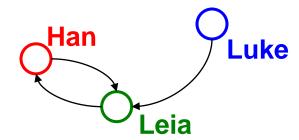
A set of vertices, also known as nodes

$$V = \{v_1, v_2, ..., v_n\}$$

A set of edges

$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge e_i is a pair of vertices
 (v_i, v_k)
- An edge "connects" the vertices
- Graphs can be directed or undirected



An ADT?

- Can think of graphs as an ADT with operations like isEdge ((v_i, v_k))
- But it is unclear what the "standard operations" are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 - 1. Formulating them in terms of graphs
 - 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology for graphs

Some Graphs

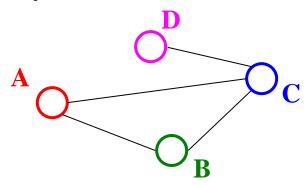
For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites
- ...

Core algorithms that work across such domains is why we are CSE

Undirected Graphs

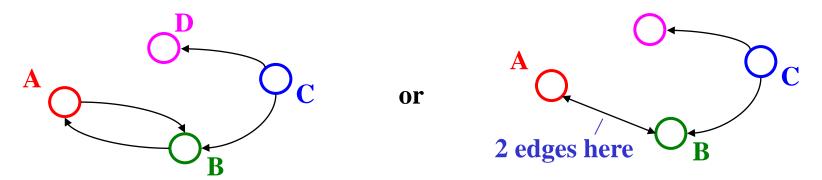
- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"



- Thus, $(u,v) \in E$ implies $(v,u) \in E$.
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed Graphs

In directed graphs (a.k.a. digraphs), edges have a direction



- Thus, $(u,v) \in E$ does not imply $(v,u) \in E$.
 - Let $(u,v) \in E$ mean $u \rightarrow v$
 - Call u the source and v the destination
- In-Degree of a vertex: number of in-bound edges,
 i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges,
 i.e., edges where the vertex is the source

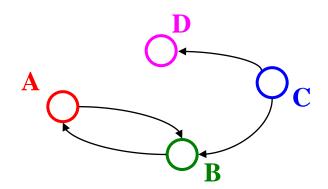
Self-Edges, Connectedness

- A self-edge a.k.a. a loop edge is of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
 - Even if every node has non-zero degree
 - More discussion of this to come

More Notation

For a graph G = (V, E):

- |V| is the number of vertices
- |E| is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?



- If $(u,v) \in E$
 - Then v is a neighbor of u (i.e., v is adjacent to u)
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$

More Notation

For a graph G = (V, E):

- |V| is the number of vertices
- |E| is the number of edges
 - Minimum?
 - Maximum for undirected? $|V||V+1|/2 \in O(|V|^2)$
 - Maximum for directed? |V|² ∈ O(|V|²)
 (assuming self-edges allowed, else subtract |V|)
- If $(u,v) \in E$
 - Then v is a neighbor of u (i.e., v is adjacent to u)
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$

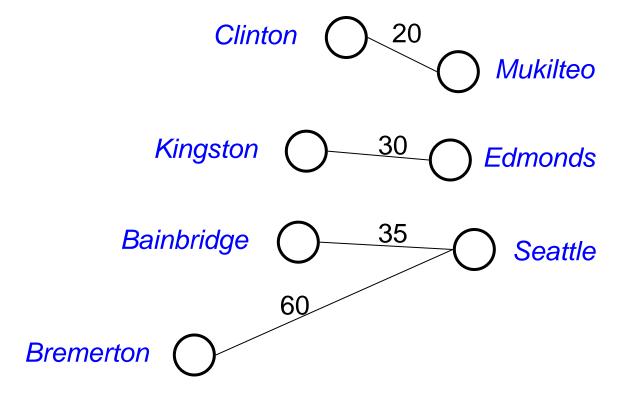
Examples again

Which would use directed edges?
Which would have self-edges?
Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites
- ...

Weighted Graphs

- In a weighted graph, each edge has a weight a.k.a. cost
 - Typically numeric (our examples use ints, but not required)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many do not



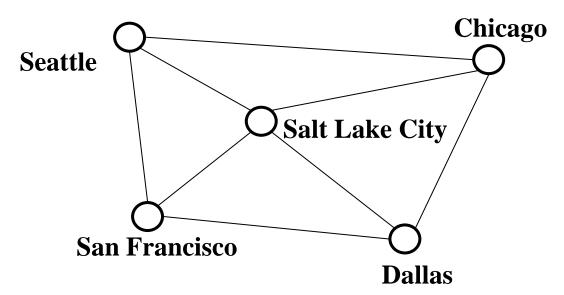
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites
- ...

Paths and Cycles

- A path is a list of vertices $[\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_n]$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $0 \le i < n$. We say "a path from \mathbf{v}_0 to \mathbf{v}_n "
- A cycle is a path that begins and ends at the same node $(\mathbf{v_0} == \mathbf{v_n})$



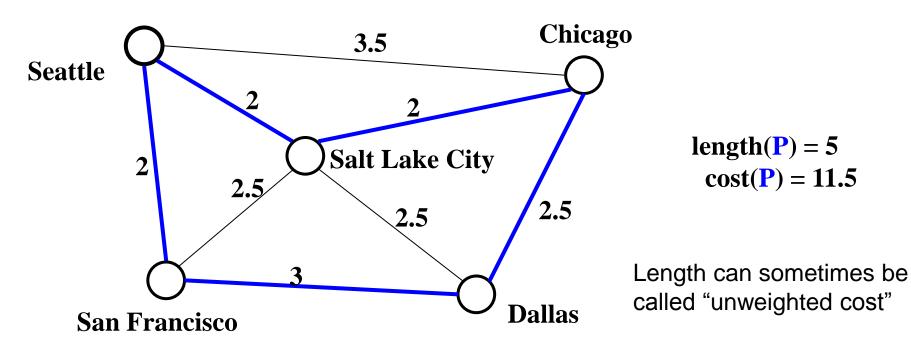
Example path (that also happens to be a cycle): [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of the weights of each edge

Example where

P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

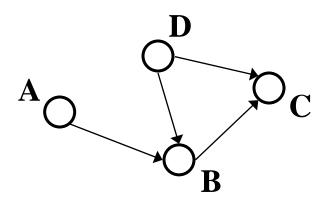


Simple Paths and Cycles

- A simple path repeats no vertices, (except the first might be the last):
 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:



Is there a path from A to D?

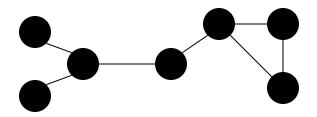
No

Does the graph contain any cycles?

No

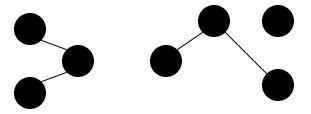
Undirected Graph Connectivity

 An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v

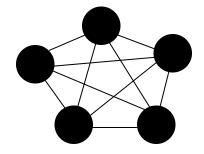


Connected graph

An undirected graph is complete,
 a.k.a. fully connected,
 if for all pairs of vertices u, v,
 there exists an edge from u to v

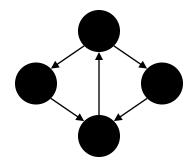


Disconnected graph

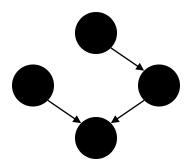


Directed Graph Connectivity

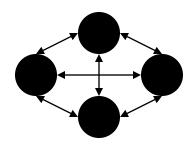
 A directed graph is strongly connected if there is a path from every vertex to every other vertex



 A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges



A direct graph is complete,
 a.k.a. fully connected,
 if for all pairs of vertices u, v,
 there exists an edge from u to v



Examples

For undirected graphs: connected?

For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

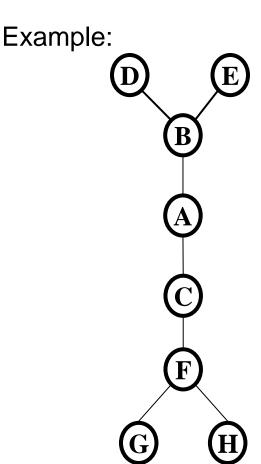
Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- undirected
- acyclic
- connected

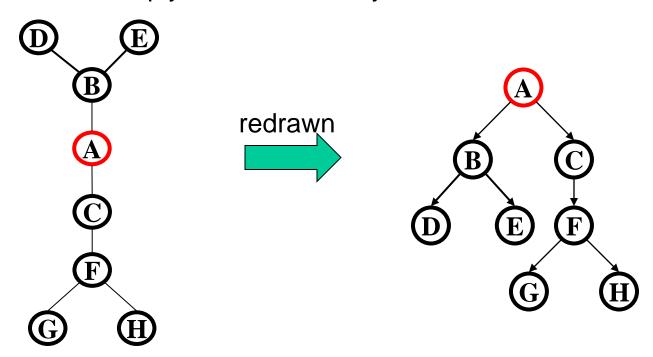
So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?



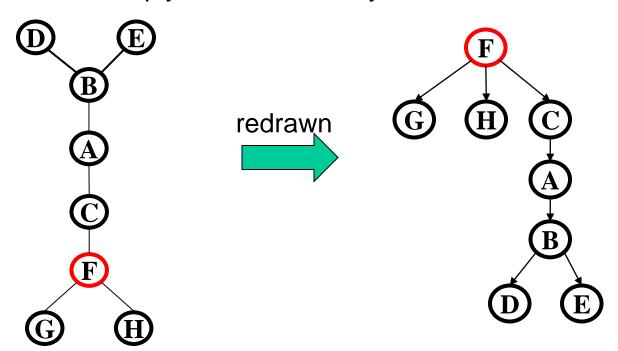
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is simply drawn differently and with undirected edges



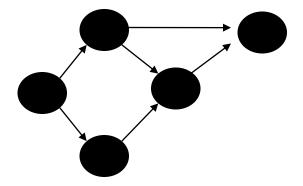
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is simply drawn differently and with undirected edges

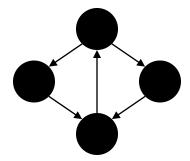


Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no directed cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree



- Every DAG is a directed graph
- But not every directed graph is a DAG



Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- ...

Density / Sparsity

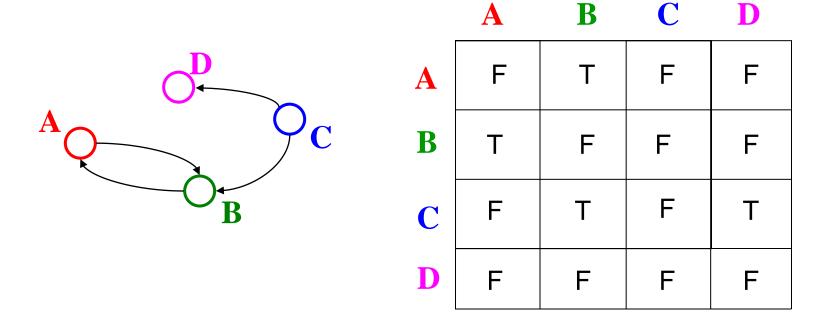
- Recall: In an undirected graph, $0 \le |E| < |V|^2$
- Recall: In a directed graph, $0 \le |E| \le |V|^2$
- So for any graph, |E| is $O(|V|^2)$
- Another fact: If an undirected graph is connected, then |E| ≥ |V|-1
- Because |E| is often much smaller than its maximum size, we do not always approximate as |E| as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight (i.e., |E| is $\Theta(|V|^2)$), we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If |E| is O(|V|) we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

What's the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- Which data structure is "best" can depend on:
 - properties of the graph(e.g., dense versus sparse)
 - the common queries about the graph
 (e.g., "is (u,v) an edge?" vs "what are the neighbors of node u?")
- So we will discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to |V|-1
- A |V| x |V| matrix of Booleans (or 0 vs. 1)
 - Then M[u][v] == true means there is an edge from u to v



Adjacency Matrix Properties

- Running time to:
 - Get a vertex's out-edges:
 - Get a vertex's in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
- Best for sparse or dense graphs?

		D		
A	F	Т	F	F
B	Т	П	F	F
C	F	Т	F	Т
D	F	F	F	F

Adjacency Matrix Properties

- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - Get a vertex's in-edges: O(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: O(1)
- Space requirements:
 - $|V|^2$ bits
- Best for sparse or dense graphs?
 - Best for dense graphs

	A	D		D
A	F	Т	IL	F
В	Т	F	H	F
C	F	Т	F	Т
D	F	F	F	F

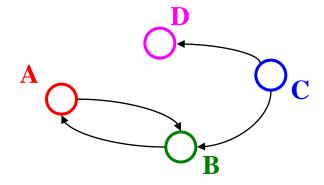
Adjacency Matrix Properties

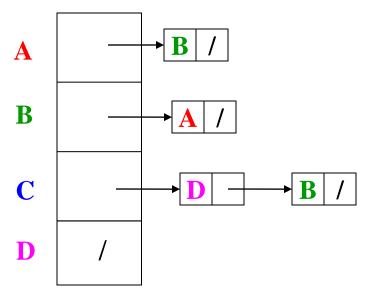
- How will the adjacency matrix vary for an undirected graph?
 - Undirected will be symmetric about diagonal axis
- How can we adapt the representation for weighted graphs?
 - Instead of a Boolean, store an number in each cell
 - Need some value to represent 'not an edge'
 - 0, -1, or some other value based on how you are using the graph

		_		
A	F	Т	Щ	F
B	Т	F	F	F
C	F	Т	F	Т
D	F	F	F	F

Adjacency List

- Assign each node a number from 0 to |V|-1
- An array of length | v | in which each entry stores
 a list of all adjacent vertices (e.g., linked list)

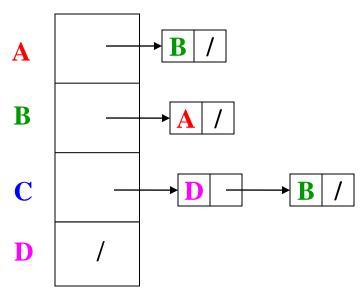




Adjacency List Properties

- Running time to:
 - Get all of a vertex's out-edges:
 - Get all of a vertex's in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:

Best for dense or sparse graphs?

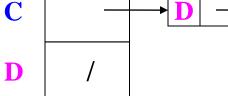


Adjacency List Properties

A B /

B

- Running time to:
 - Get all of a vertex's out-edges:
 - O(d) where d is out-degree of vertex



- Get all of a vertex's in-edges:
 - O(|E|) (but could keep a second adjacency list for this!)
- Decide if some edge exists:
 - O(d) where d is out-degree of source
- Insert an edge: O(1) (unless you need to check if it's there)
- Delete an edge: O(d) where d is out-degree of source
- Space requirements:
 - O(|V|+|E|)
- Best for dense or sparse graphs?
 - Best for sparse graphs, so usually just stick with linked lists

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Could save space by using only about half the array
 - How would you "get all neighbors"?
- Lists: Each edge in two lists to support efficient "get all neighbors"

