CSE332: Data Abstractions

Lecture 13: Graph Traversal / Topological Sort

James Fogarty
Winter 2012

Midterm Question 1 b

```
for(i = 1; i <= n; i = i * 2) {
    for(j = 0; j < i; j++) {
        sum++;
    }
}
```

For $n=64$, outer loop will set i to values: $1,2,4,8,16,32,64$
sum will have final value $1+2+4+8+16+32+64=2 n-1$

Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Indentation. Be consistent about tabs versus spaces.
- Look at your code in a non-Eclipse editor and make sure it looks right (e.g., emacs, vim, notepad)

Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Remember your 142 / 143 style rules
- Constants should be constant and capitalized
private static final int INITIAL_ARRAY_SIZE = 10;
- Use proper Java naming conventions
camelCase
- Give useful names to variables and methods
a is not an acceptable name for your inner array

Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Remember your 142 / 143 style rules
- Comments! Write them!
- They are not just for public methods
- Many of you missing them for private methods, inner classes
- This is not a helpful comment

```
// constructor
public ArrayStack() {
```


Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Remember your 142 / 143 style rules
- Comments! Write them!
- Useful to frame comments in terms of pre/post conditions
- The expected input (valid ranges for each parameter)
- Under what conditions exceptions will thrown
- What will be returned
- Also comment complex sections of code, as you will not remember exactly what you were doing 6 weeks later

Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Remember your 142 / 143 style rules
- Boolean zen

```
if (size == 0) {
vs.
    return size == 0;
} else {
    return false;
}
```


Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Remember your 142 / 143 style rules
- Boolean zen

```
if (size == 0) {
vs.
    return size == 0;
} else {
    return false;
}
```


Style Points

- There will be more opportunities to lose style points on Project 2
- But here are some common issues in Project 1 code
- Do not use unnecessary fields that introduce more potential errors
- No need for size in the ListStack if you only use it to check whether the list was empty (i.e., just check if head is null)
- Whitespace can be beautiful! Use it appropriately for readability return size==0? true:false; is bad zen and hard to read
- Do not delay the write up until 30 minutes before the project is due
- It will be a worth a substantial chunk of your points
- Your responses will not be up to par

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge: O(1)
- Delete an edge: $O(1)$

	A	B	C	D
A	F	T	F	F
B	T	F	F	F
C	F	T	F	T
D	F	F	F	F

- Space requirements:
- $|\mathrm{V}|^{2}$ bits
- Best for sparse or dense graphs?
- Best for dense graphs

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges: $O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge: $O(1)$ (unless you need to check if it's there)
- Delete an edge: $O(d)$ where d is out-degree of source
- Space requirements:
- $O(|\mathrm{~V}|+|\mathrm{E}|)$
- Best for dense or sparse graphs?
- Best for sparse graphs, so usually just stick with linked lists

Undirected Graphs

Adjacency matrices \& adjacency lists both do fine for undirected graphs

- Matrix: Could save space by using only about half the array
- How would you "get all neighbors"?
- Lists: Each edge in two lists to support efficient "get all neighbors"

Some Applications: Moving Around Washington

What's the shortest way to get from Seattle to Pullman?

Some Applications: Moving Around Washington

What's the fastest way to get from Seattle to Pullman?

Some Applications: Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Some Applications: Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?
How about $4^{\text {th }}$ and Seneca?

Graph Traversals

For an arbitrary graph and a starting node \mathbf{v},
find all nodes reachable from \mathbf{v} (i.e., there exists a path)

- Possibly "do something" for each node
- e.g., print to output, set some field, return from iterator, etc.

Related Problems:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
- For strongly, need a cycle back to starting node

Basic Idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
        if(u is not marked) {
        mark u
        pending.add(u)
        }
    }
}
```

Why do we need to mark nodes?

Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|\mathrm{E}|)$
- Use an adjacency list representation
- The order we traverse depends entirely on add and remove
- Popular choice: a stack "depth-first graph search" "DFS"
- Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: Explore areas closer to the start node first

Recursive DFS, Example with Tree

- A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
        DFS (u)
}
```

- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once

DFS with Stack, Example with Tree

- Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

BFS with Queue, Example with Tree

- Order processed: A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e. "optimal solutions"
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- But depth-first can use less space in finding a path
- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements
- But a queue for BFS may hold $O(|\mathrm{~V}|)$ nodes
- A third approach:
- Iterative deepening (IDFS):
- Try DFS up to recursion of K levels deep.
- If that fails, increment k and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Easy:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it

Example input:

Example output:
$142,126,143,311,331,332,312,341,351,333,440,352$

Questions and Comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph
- What DAGs have exactly 1 answer?
- Lists
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to finish your degree
- Computing order in which to recompute cells in a spreadsheet
- Determining the order to compile files with dependencies
- In general, using a dependency graph to find an order of execution

A First Algorithm for Topological Sort

1. Label each vertex with its in-degree

- Think "write in a field in the vertex"
- You could also do this with a data structure on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} labeled with in-degree of 0
b) Output \mathbf{v} and conceptually "remove it" from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v}, decrement in-degree of \mathbf{u} - (i.e., u such that (v,u) in \mathbf{E})

Example

Output:

Node: 126142143311312331332333341351352440
Removed?
In-degree:

Example

Output:

Node: 126142143311312331332333341351352440
Removed?
In-degree: $00 \begin{array}{llllllllllll} & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1\end{array}$

Example

Node: 126142143311312331332333341351352440
Removed? x
In-degree: $\begin{array}{lllllllllllll} & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1\end{array}$

Example

Node: $\quad 126142143311312331332333341351352440$ Removed? x x In-degree: $\begin{array}{lllllllllllll} & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1\end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & & 0 & 0 & & \end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x x $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & & 0 \\ & & & 0 & & 0 & & & & & & & \end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x x x $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & & 0\end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x x x x $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & & 0 \\ & & & 0 & & 0 & & & & & & & \end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & & 0 & & & 0 & & & & \end{array}$

Example

Node:
126142143311312331332333341351352440 Removed? $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & & 0 & & & 0 & & & & \end{array}$

Running Time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```


Running Time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```

- What is the worst-case running time?
- Initialization $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}+|E|\right)$ - not good for a sparse graph!

Doing Better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, or something
- Order we process them affects the output but not correctness or efficiency, assuming add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0 -degree nodes
2. While queue is not empty
a) $\mathbf{v}=$ dequeue()
b) Output \mathbf{v} and remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v}, decrement the in-degree of \mathbf{u}, if new degree is 0 , enqueue it

Running Time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0)
        enqueue (w) ;
    }
}
```


Running Time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0)
        enqueue (w) ;
    }
}
```

- Initialization: $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|\mathrm{E}|+|\mathrm{V}|)$ - much better for sparse graph!

