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Midterm Question 1b 

for(i = 1; i <= n; i = i * 2) { 

for(j = 0; j < i; j++) { 

 sum++; 

} 

} 

 

For n = 64, outer loop will set i to values: 1, 2, 4, 8, 16, 32, 64 

 

sum will have final value 1 + 2 + 4 + 8 + 16 + 32 + 64 = 2n - 1 

 

 

 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Indentation.  Be consistent about tabs versus spaces.  

– Look at your code in a non-Eclipse editor and  

make sure it looks right (e.g., emacs, vim, notepad) 

 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Remember your 142 / 143 style rules 

 

– Constants should be constant and capitalized 

private static final int INITIAL_ARRAY_SIZE = 10; 

 

– Use proper Java naming conventions 

camelCase  

 

– Give useful names to variables and methods 

a is not an acceptable name for your inner array 

 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Remember your 142 / 143 style rules 

 

– Comments! Write them! 

• They are not just for public methods 

• Many of you missing them for private methods, inner classes 

• This is not a helpful comment 

 
// constructor 

public ArrayStack() { 

 ... 

} 

 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Remember your 142 / 143 style rules 

 

– Comments! Write them! 

• Useful to frame comments in terms of pre/post conditions  

– The expected input (valid ranges for each parameter)  

– Under what conditions exceptions will thrown 

– What will be returned 

 

• Also comment complex sections of code, as you will not 

remember exactly what you were doing 6 weeks later 

 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Remember your 142 / 143 style rules 

 

– Boolean zen 

 

if (size == 0) { 

 return true; 

} else { 

 return false; 

} 

 

 

 

return size == 0; vs. 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Remember your 142 / 143 style rules 

 

– Boolean zen 

 

if (size == 0) { 

 return true; 

} else { 

 return false; 

} 

 

return size == 0; vs. 



Style Points 

• There will be more opportunities to lose style points on Project 2 

– But here are some common issues in Project 1 code 

 

• Do not use unnecessary fields that introduce more potential errors 

– No need for size in the ListStack if you only use it to check 

whether the list was empty (i.e., just check if head is null) 

 

• Whitespace can be beautiful! Use it appropriately for readability 
return size==0?true:false; is bad zen and hard to read 

 

• Do not delay the write up until 30 minutes before the project is due 

– It will be a worth a substantial chunk of your points 

– Your responses will not be up to par 

 



Adjacency Matrix Properties 

• Running time to: 

– Get a vertex’s out-edges: O(|V|) 

– Get a vertex’s in-edges: O(|V|) 

– Decide if some edge exists: O(1) 

– Insert an edge: O(1) 

– Delete an edge: O(1) 

 

• Space requirements: 

– |V|2 bits 
 

• Best for sparse or dense graphs? 

– Best for dense graphs 
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Adjacency List Properties 

• Running time to: 

– Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex 

– Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!) 

– Decide if some edge exists:  

 O(d) where d is out-degree of source 

– Insert an edge: O(1) (unless you need to check if it’s there) 

– Delete an edge: O(d) where d is out-degree of source 
 

• Space requirements: 

– O(|V|+|E|) 
 

• Best for dense or sparse graphs?  

– Best for sparse graphs, so usually just stick with linked lists 
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Undirected Graphs 

Adjacency matrices & adjacency lists both do fine for undirected graphs 

• Matrix: Could save space by using only about half the array 

– How would you “get all neighbors”? 

• Lists: Each edge in two lists to support efficient “get all neighbors” 

 

Example: 
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Some Applications: 

Moving Around Washington 

What’s the shortest way to get from Seattle to Pullman? 



Some Applications: 

Moving Around Washington 

What’s the fastest way to get from Seattle to Pullman? 



Some Applications: 

Reliability of Communication 

If Wenatchee’s phone exchange goes down, 

can Seattle still talk to Pullman? 



Some Applications: 

Bus Routes in Downtown Seattle 

If we’re at 3rd and Pine, how can we get to 

1st and University using Metro?   

How about 4th and Seneca? 



Graph Traversals 

For an arbitrary graph and a starting node v,  

find all nodes reachable from v (i.e., there exists a path)  

– Possibly “do something” for each node 

– e.g., print to output, set some field, return from iterator, etc. 
 

Related Problems: 

• Is an undirected graph connected? 

• Is a directed graph weakly / strongly connected? 

– For strongly, need a cycle back to starting node 

 

Basic Idea:  

– Keep following nodes 

– But “mark” nodes after visiting them, so the traversal  

terminates and processes each reachable node exactly once 



Abstract Idea 

  traverseGraph(Node start) { 

    Set pending = emptySet(); 

    pending.add(start) 

     mark start as visited 

     while(pending is not empty) { 

       next = pending.remove() 

       for each node u adjacent to next 

          if(u is not marked) { 

            mark u 

            pending.add(u) 

          } 

     } 

  } 

Why do we need to mark nodes? 



Running Time and Options 

• Assuming add and remove are O(1), entire traversal is O(|E|) 

– Use an adjacency list representation 

 

• The order we traverse depends entirely on add and remove 

– Popular choice: a stack  “depth-first graph search”  “DFS” 

– Popular choice: a queue “breadth-first graph search” “BFS” 

 

• DFS and BFS are “big ideas” in computer science 

– Depth: recursively explore one part  

before going back to the other parts not yet explored 

– Breadth: Explore areas closer to the start node first 



Recursive DFS, Example with Tree 

• A tree is a graph and DFS and BFS are particularly easy to “see”  
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DFS(Node start) { 

  mark and process start 

  for each node u adjacent to start 

    if u is not marked 

      DFS(u) 

} 

• Order processed: A, B, D, E, C, F, G, H 

• Exactly what we called a “pre-order traversal” for trees 

– The marking is because we support arbitrary graphs  

and we want to process each node exactly once 

 



DFS with Stack, Example with Tree 
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DFS2(Node start) { 

  initialize stack s to hold start 

  mark start as visited 

  while(s is not empty) { 

    next = s.pop() // and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and push onto s 

  } 

} 

• Order processed: A, C, F, H, G, B, E, D 

• A different but perfectly fine traversal 

 



BFS with Queue, Example with Tree 
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BFS(Node start) { 

  initialize queue q to hold start 

  mark start as visited 

  while(q is not empty) { 

    next = q.dequeue() // and “process” 

    for each node u adjacent to next 

     if(u is not marked) 

       mark u and enqueue onto q 

  } 

} 

• Order processed: A, B, C, D, E, F, G, H 

• A “level-order” traversal 

 



Comparison 

• Breadth-first always finds shortest paths, i.e. “optimal solutions” 

– Better for “what is the shortest path from x to y” 
 

• But depth-first can use less space in finding a path 

– If longest path in the graph is p and highest out-degree is d 

then DFS stack never has more than d*p elements 

– But a queue for BFS may hold O(|V|) nodes 
 

• A third approach: 

– Iterative deepening (IDFS):  

• Try DFS up to recursion of K levels deep.   

• If that fails, increment K and start the entire search over 

– Like BFS, finds shortest paths.  Like DFS, less space. 

 

 



Saving the Path 

• Our graph traversals can answer the reachability question: 

– “Is there a path from node x to node y?” 
 

 

• But what if we want to actually output the path? 
 

 

• Easy:  

– Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to the 
search, set v.path field to be u) 

– When you reach the goal, follow path fields back to where 

you started (and then reverse the answer) 



Example using BFS 

Seattle 

San Francisco 

Dallas 

Salt Lake City 

What is a path from Seattle to Austin 

–   Remember marked nodes are not re-enqueued 

–   Note shortest paths may not be unique 

Chicago 

Austin 

1 

1 

1 

2 

3 

0 



Topological Sort 

Problem: Given a DAG G=(V,E), output all the vertices in order 

such that if no vertex appears before any other vertex that has 

an edge to it 

 

Example input: 

 

 

 

 

 

 

Example output: 

     142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352 

 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 

Disclaimer: Do not use for official advising purposes!  

(Implies that CSE 332 is a pre-req for CSE 312 – not true) 



Questions and Comments 

• Why do we perform topological sorts only on DAGs? 

– Because a cycle means there is no correct answer 

 

• Is there always a unique answer? 

– No, there can be 1 or more answers; depends on the graph 

 

• What DAGs have exactly 1 answer? 

– Lists 

 

• Terminology: A DAG represents a partial order and  

a topological sort produces a total order that is consistent with it 



Uses 

• Figuring out how to finish your degree 

 

• Computing order in which to recompute cells in a spreadsheet 

 

• Determining the order to compile files with dependencies 

 

• In general, using a dependency graph to find an order of execution  



A First Algorithm for Topological Sort 

1. Label each vertex with its in-degree 

– Think “write in a field in the vertex” 

– You could also do this with a data structure on the side 

 

2. While there are vertices not yet output: 

a) Choose a vertex v labeled with in-degree of 0 

b) Output v and conceptually “remove it” from the graph 

c) For each vertex u adjacent to v, decrement in-degree of u 

 -  (i.e., u such that (v,u) in E) 



Example Output:  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed? 

In-degree: 
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Example Output:  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed? 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

 

 

CSE 142 CSE 143 
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CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
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CSE 440 

… 



Example Output:  126  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0               0                      0      0 

                                    0 
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Example Output:  126 

               142 

               143 

               311  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0             0      0 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x               x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0             0      0 

                                    0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x               x       x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0              0 

                                    0              0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

     312 

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0              0 

                                    0              0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

     312 

               341 

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x              x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0              0 

                                    0              0 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 

126 

CSE 440 

… 



Example Output:  126 

               142 

               143 

               311 

               331 

    332 

     312 

               341 

    351 

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x              x      x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0      0      0 

                                    0              0                       0 

 

CSE 142 CSE 143 
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Example 
Output:  126 

               142 

               143 

               311 

               331 

               332 

               312 

               341 

               351 

               333 

               352 

               440  

Node:          126 142 143  311  312  331  332  333  341  351  352  440 

Removed?   x     x       x      x      x       x       x     x       x      x      x      x 

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1 

                                    1      0      1       0       0     1      0      0      0      0 

                                    0              0                       0 
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… 



Running Time? 

  labelEachVertexWithItsInDegree(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 

    put v next in output 

   for each w adjacent to v 

      w.indegree--; 

  } 



Running Time? 

• What is the worst-case running time? 

– Initialization O(|V| + |E|) (assuming adjacency list) 

– Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 

– Sum of all decrements O(|E|) (assuming adjacency list) 

– So total is O(|V|2 + |E|) – not good for a sparse graph! 

 

  labelEachVertexWithItsInDegree(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = findNewVertexOfDegreeZero(); 

    put v next in output 

   for each w adjacent to v 

      w.indegree--; 

  } 



Doing Better 

The trick is to avoid searching for a zero-degree node every time! 

– Keep the “pending” zero-degree nodes in a  

list, stack, queue, bag, or something 

– Order we process them affects the output but not  

correctness or efficiency, assuming add/remove are both O(1) 
 

Using a queue: 
 

1. Label each vertex with its in-degree, enqueue 0-degree nodes 

2. While queue is not empty 

a)  v = dequeue() 

b) Output v and remove it from the graph 

c) For each vertex u adjacent to v,  

decrement the in-degree of u, if new degree is 0, enqueue it 

 



Running Time? 

  labelAllAndEnqueueZeros(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 

    put v next in output 

 for each w adjacent to v { 

      w.indegree--; 

      if(w.indegree==0)  

    enqueue(w); 

    } 

  } 



Running Time? 

  labelAllAndEnqueueZeros(); 

 for(ctr=0; ctr < numVertices; ctr++){ 

    v = dequeue(); 

 put v next in output 

 for each w adjacent to v { 

      w.indegree--; 

      if(w.indegree==0)  

    enqueue(w); 

    } 

  } 
 

– Initialization: O(|V| + |E|) (assuming adjacency list) 

– Sum of all enqueues and dequeues: O(|V|) 

– Sum of all decrements: O(|E|) (assuming adjacency list) 

– So total is O(|E| + |V|) – much better for sparse graph! 

 


