
CSE332: Data Abstractions

Lecture 14: Shortest Paths

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman, Richard Ladner, Steve Seitz

Single Source Shortest Paths

• Done: BFS for minimum path length from v to u in time O(|E|+(|V|)

• Actually, can find the minimum path length from v to every node

– Still O(|E|+(|V|)

– No faster way for a “distinguished” destination in the worst-case

• Now: Weighted graphs

Given a weighted graph and node v,

find the minimum-cost path from v to every node

• As before, asymptotically no harder than for one destination

• Unlike before, BFS will not work

Not as Easy

Why BFS won’t work: Shortest path may not have the fewest edges

– Annoying when this happens with costs of flights

500

100
100 100

100

We will assume there are no negative weights

• Problem is ill-defined if there are negative-cost cycles

• Today’s algorithm is wrong if edges can be negative

7

10 5

-11

Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)

– Truly one of the “founders” of computer science;

this is just one of his many contributions

– Sample quotation: “computer science is no more

about computers than astronomy is about telescopes”

• The idea: reminiscent of BFS, but adapted to handle weights

– A priority queue will prove useful for efficiency

– Grow set of nodes whose shortest distance has been computed

– Nodes not in the set will have a “best distance so far”

Dijkstra’s Algorithm: Idea

• Initially, start node has cost 0 and all other nodes have cost 

• At each step:

– Pick closest unknown vertex v

– Add it to the “cloud” of known vertices

– Update distances for nodes with edges from v

• That’s it! But we need to prove it produces correct answers

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5

The Algorithm

1. For each node v, set v.cost =  and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v,u) with weight w,

 c1 = v.cost + w // cost of best path through v to u

 c2 = u.cost // cost of best path to u previously known

 if(c1 < c2){ // if the path through v is better

 u.cost = c1

 u.path = v // for computing actual paths

 }

Important Features

• When a vertex is marked known,

the cost of the shortest path to that node is known

– The path is also known by following back-pointers

• While a vertex is still not known,

another shorter path to it might still be found

Example #1

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A

B

C

D

E

F

G

H

5

Order Added to Known Set:

Example #1

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??

5

Order Added to Known Set:

Example #1

A B

D
C

F H

E

G

0 2

4

1

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B  2 A

C  1 A

D  4 A

E ??

F ??

G ??

H ??

5

Order Added to Known Set:

A

Example #1

A B

D
C

F H

E

G

0 2

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B  2 A

C Y 1 A

D  4 A

E  12 C

F ??

G ??

H ??

5

Order Added to Known Set:

A, C

Example #1

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D  4 A

E  12 C

F  4 B

G ??

H ??

5

Order Added to Known Set:

A, C, B

Example #1

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F  4 B

G ??

H ??

5

Order Added to Known Set:

A, C, B, D

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G ??

H  7 F

5

Order Added to Known Set:

A, C, B, D, F

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G  8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

Important Features

• When a vertex is marked known,

the cost of the shortest path to that node is known

– The path is also known by following back-pointers

• While a vertex is still not known,

another shorter path to it might still be found

Interpreting the Results

• Now that we’re done, how do we get the path from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

Stopping Short

• How would this have worked differently if we were only interested in:

– the path from A to G?

– the path from A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

Example #2

A B

C
D

F

E

G

0

2

1
2

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

Example #2

A B

C
D

F

E

G

0

2

1

2

1
2

vertex known? cost path

A Y 0

B ??

C  2 A

D  1 A

E ??

F ??

G ??

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A

Example #2

A B

C
D

F

E

G

0 6

7

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  6 D

C  2 A

D Y 1 A

E  2 D

F  7 D

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D

Example #2

A B

C
D

F

E

G

0 6

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  6 D

C Y 2 A

D Y 1 A

E  2 D

F  4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G  6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

5

1

1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

Example #3

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?

Is this expensive?

…

Example #3

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive? No, each edge is processed only once

…

A Greedy Algorithm

• Dijkstra’s algorithm

– For single-source shortest paths in a weighted graph

(directed or undirected) with no negative-weight edges

– An example of a greedy algorithm:

• At each step, irrevocably does what seems best at that step

– once a vertex is in the known set,

does not go back and readjust its decision

• Locally optimal

– does not always mean globally optimal

Where are We?

• Have described Dijkstra’s algorithm

– For single-source shortest paths in a weighted graph (directed

or undirected) with no negative-weight edges

• What should we do after learning an algorithm?

– Prove it is correct

• Not obvious!

• We will sketch the key ideas

– Analyze its efficiency

• Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

– True initially: shortest path to start node has cost 0

– If it stays true every time we mark a node “known”,

then by induction this holds and eventually everything is “known”

Key fact we need:

When we mark a vertex “known” we won’t discover a shorter path later!

– This holds only because Dijkstra’s algorithm

picks the node with the next shortest path-so-far

– The proof is by contradiction…

Correctness: The Cloud (Rough Sketch)

 The Known
Cloud

v Next shortest path from

inside the known cloud

w

Better path to

v? No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– We have selected it, and we only know about paths

through the cloud to a node at the edge of the cloud

• Assume the actual shortest path to v is different

– It is not entirely within the cloud, or else we would know about it

– So it must use non-cloud nodes

– Let w be the first non-cloud node on this path.

– The part of the path up to w is already known and must be shorter than the

best-known path to v. So v would not have been picked. Contradiction.

Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 while(not all nodes are known) {

 b = find unknown node with smallest cost

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 a.cost = b.cost + weight((b,a))

 a.path = b

 }

}

Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 while(not all nodes are known) {

 b = find unknown node with smallest cost

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 a.cost = b.cost + weight((b,a))

 a.path = b

 }

}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

Improving Asymptotic Running Time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2)

due to each iteration looking for the node to process next

– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can

change as we process edges

• Solution?

Improving Asymptotic Running Time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2)

due to each iteration looking for the node to process next

– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can

change as we process edges

• Solution?

– A priority queue holding all unknown nodes, sorted by cost

– But must support decreaseKey operation

• Must maintain a reference from each node to its position

in the priority queue

• Conceptually simple, but can be a pain to code up

Efficiency, Second Approach

Use pseudocode to determine asymptotic run-time

2/11/2011 40

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 build-heap with all nodes

 while(heap is not empty) {

 b = deleteMin()

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 decreaseKey(a,“new cost – old cost”)

 a.path = b

 }

}

Efficiency, Second Approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 build-heap with all nodes

 while(heap is not empty) {

 b = deleteMin()

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 decreaseKey(a,“new cost – old cost”)

 a.path = b

 }

}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)

Dense vs. Sparse Again

• First approach: O(|V|2)

• Second approach: O(|V|log|V|+|E|log|V|)

• So which is better?

– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))

– Dense: O(|V|2)

• But, remember these are worst-case and asymptotic

– Priority queue might have slightly worse constant factors

– On the other hand, for “normal graphs”, we might rarely call
decreaseKey (or not percolate far), making |E|log|V| more like |E|

All-Pairs Shortest Path

• Find the shortest path between all pairs of vertices in the graph

• How?

Dynamic Programming

Algorithmic technique that systematically records the answers

to sub-problems in a table and re-uses those recorded results

(rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

 Fib(N) = Fib(N-1) + Fib(N-2)

Recursion would be insanely expensive,

but it is cheap if you already know results of prior computations

Floyd-Warshall

for (int k = 1; k =< V; k++)

 for (int i = 1; i =< V; i++)

 for (int j = 1; j =< V; j++)

 if ((M[i][k]+ M[k][j]) < M[i][j])

 M[i][j] = M[i][k]+ M[k][j]

Invariant:

After the kth iteration, for all pairs of vertices the matrix includes the

shortest path containing only vertices 1..k as intermediate vertices

a b c d e

a 0 2 - -4 -

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

a b c d e

a 0 2 - -4 -

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 1

a b c d e

a 0 2 - -4 -

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 2

a b c d e

a 0 2 0 -4 5

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 2

a b c d e

a 0 2 0 -4 5

b - 0 -2 1 3

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 3

a b c d e

a 0 2 0 -4 1

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 3

a b c d e

a 0 2 0 -4 1

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 4

a b c d e

a 0 2 0 -4 0

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 4

a b c d e

a 0 2 0 -4 0

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Initial state

of the matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

k = 5

a b c d e

a 0 2 0 -4 0

b - 0 -2 1 -1

c - - 0 - 1

d - - - 0 4

e - - - - 0

b

c

d e

a

-4

2

-2

1

3
1

4

Floyd-Warshall

All-Pairs

Shortest Path

Final Matrix

Contents

What Comes Next?

In the logical course progression, we would next study

1. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will

• Start parallelism and concurrency

• Come back to graphs at the end of the course

Note toward the future:

– We cannot do all of graphs last because

of the CSE312 co-requisite (needed for study of NP)

