CSE332: Data Abstractions Lecture 14: Shortest Paths

James Fogarty
Winter 2012

Single Source Shortest Paths

- Done: BFS for minimum path length from \mathbf{v} to \mathbf{u} in time $O(|\mathrm{E}|+(|\mathrm{V}|)$
- Actually, can find the minimum path length from \mathbf{v} to every node
- Still $O(|\mathrm{E}|+(|\mathrm{V}|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node \mathbf{v}, find the minimum-cost path from \mathbf{v} to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Not as Easy

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
- A priority queue will prove useful for efficiency
- Grow set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it! But we need to prove it produces correct answers

The Algorithm

1. For each node \mathbf{v}, set v.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Set source.cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, u) with weight w , $\mathrm{c} 1=\mathrm{v} . \operatorname{cost}+\mathrm{w} / /$ cost of best path through v to u c2 = u.cost // cost of best path to u previously known if $(\mathrm{c} 1<\mathrm{c} 2)$ \{ // if the path through v is better
u.cost $=\mathrm{c} 1$
u.path $=\mathrm{v} / /$ for computing actual paths
\}

Important Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Example \#1

vertex	known?	cost	path
A			
B			
C			
D			
E			
F			
G			
H			

Example \#1

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	
H		$? ?$	

Example \#1

Important Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Interpreting the Results

- Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
- the path from A to G ?
- the path from A to E ?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:
A

vertex	known?	cost	path
A	Y	0	
B		$? ?$	
C		≤ 2	A
D		≤ 1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:
A, D

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C		≤ 2	A
D	Y	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C	Y	2	A
D	Y	1	A
E		≤ 2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E

vertex	known?	cost	path
A	Y	0	
B		≤ 3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B, F

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Example \#3

How will the best-cost-so-far for Y proceed?
Is this expensive?

Example \#3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...
Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- At each step, irrevocably does what seems best at that step
- once a vertex is in the known set, does not go back and readjust its decision
- Locally optimal
- does not always mean globally optimal

Where are We?

- Have described Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need:
When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to \mathbf{v} must have only nodes "in the cloud"
- We have selected it, and we only know about paths through the cloud to a node at the edge of the cloud
- Assume the actual shortest path to \mathbf{v} is different
- It is not entirely within the cloud, or else we would know about it
- So it must use non-cloud nodes
- Let \mathbf{w} be the first non-cloud node on this path.
- The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false]
    start.cost = 0
    while (not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
        if(!a.known)
    if (b.cost + weight((b,a)) < a.cost) \{
        a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight( (b,a))
        a.path \(=\) b
    \}
```


Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while (not all nodes are known) \{
    \(\mathrm{b}=\) find unknown node with smallest cost
    b.known \(=\) true
    for each edge (b,a) in G
    if(!a.known)
    if (b.cost + weight( (b, a)) < a.cost) \{
        a.cost \(=\mathrm{b} . \operatorname{cost}+\) weight( \((\mathrm{b}, \mathrm{a}))\)
        a.path \(=\) b
    \}

\section*{Improving Asymptotic Running Time}
- So far: \(O\left(|\mathrm{~V}|^{2}\right)\)
- We had a similar "problem" with topological sort being \(O\left(|\mathrm{~V}|^{2}\right)\) due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

\section*{Improving Asymptotic Running Time}
- So far: \(O\left(\mid \mathrm{V} \mathrm{l}^{2}\right)\)
- We had a similar "problem" with topological sort being \(O\left(|\mathrm{~V}|^{2}\right)\) due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its position in the priority queue
- Conceptually simple, but can be a pain to code up

\section*{Efficiency, Second Approach}

Use pseudocode to determine asymptotic run-time
```

dijkstra(Graph G, Node start) \{
for each node: x .cost=infinity, x. known=false
start.cost $=0$
build-heap with all nodes
while(heap is not empty) \{
b = deleteMin()
b.known $=$ true
for each edge (b, a) in G
if(!a.known)
if (b.cost + weight((b,a)) < a.cost) \{
decreaseKey (a,"new cost - old cost")
a.path = b
\}
\}

```

\section*{Efficiency, Second Approach}

Use pseudocode to determine asymptotic run-time
```

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false - O(|V|)
while(heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost) { LO(|E|log|V|)
decreaseKey(a,"new cost - old cost")
a.path = b
}

Dense vs. Sparse Again

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $O(|\mathrm{E}| \log |\mathrm{V}|)$)
- Dense: $O\left(|\mathrm{~V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might rarely call decreaseKey (or not percolate far), making |E|log|V| more like |E|

All-Pairs Shortest Path

- Find the shortest path between all pairs of vertices in the graph
- How?

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

$$
\operatorname{Fib}(N)=\operatorname{Fib}(N-1)+\operatorname{Fib}(N-2)
$$

Recursion would be insanely expensive, but it is cheap if you already know results of prior computations

Floyd-Warshall

for (int $k=1 ; k=<V ; k++$)
for (int i $=1 ; i=<\mathrm{V}$; i++)
for (int j $=1 ; j=<\mathrm{V}$; j++)
if ((M[i][k]+ M[k][j]) < M[i][j]) M[i][j] $=M[i][k]+M[k][j]$

Invariant:

After the kth iteration, for all pairs of vertices the matrix includes the shortest path containing only vertices $1 . . \mathrm{k}$ as intermediate vertices

Initial state of the matrix:

	a	b	c	d	e
a	0	2	-	-4	-
b	-	0	-2	1	3
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$\mathbf{M}[\mathbf{i}][\mathbf{j}]=\min (\mathbf{M}[\mathbf{i}][\mathbf{j}], \mathbf{M}[\mathbf{i}][k]+\mathbf{M}[k][\mathbf{j}])$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	-	-4	-
b	-	0	-2	1	3
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$\mathbf{M}[\mathbf{i}][\mathrm{j}]=\min (\mathbf{M}[\mathbf{i}][\mathrm{j}], \mathbf{M}[\mathbf{i}][\mathrm{k}]+\mathbf{M}[\mathrm{k}][\mathrm{j}])$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	-	-4	-
b	-	0	-2	1	3
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$\mathbf{M}[\mathbf{i}][\mathrm{j}]=\min (\mathbf{M}[\mathbf{i}][\mathrm{j}], \mathbf{M}[\mathbf{i}][\mathrm{k}]+\mathbf{M}[\mathrm{k}][\mathrm{j}])$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	0	-4	5
b	-	0	-2	1	3
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$k=2$
$\mathbf{M}[\mathbf{i}][\mathrm{j}]=\min (\mathbf{M}[\mathbf{i}][\mathrm{j}], \mathbf{M}[\mathbf{i}][\mathrm{k}]+\mathbf{M}[\mathrm{k}][\mathrm{j}])$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	0	-4	5
b	-	0	-2	1	3
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$k=3$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	0	-4	1
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$\mathbf{M}[\mathbf{i}][\mathrm{j}]=\min (\mathbf{M}[\mathbf{i}][\mathrm{j}], \mathbf{M}[\mathbf{i}][\mathrm{k}]+\mathbf{M}[\mathrm{k}][\mathrm{j}])$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	0	-4	1
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$\mathbf{M}[\mathrm{i}][\mathrm{j}]=\min (\mathbf{M}[\mathbf{i}][\mathrm{j}], \mathbf{M}[\mathbf{i}][\mathrm{k}]+\mathbf{M}[\mathrm{k}][\mathrm{j}])$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$k=4$

Initial state of the matrix:

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$k=5$

Floyd-Warshall All-Pairs Shortest Path

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

Final Matrix Contents

What Comes Next?

In the logical course progression, we would next study

1. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will

- Start parallelism and concurrency
- Come back to graphs at the end of the course

Note toward the future:

- We cannot do all of graphs last because of the CSE312 co-requisite (needed for study of NP)

