

CSE332: Data Abstractions Lecture 14: Shortest Paths

James Fogarty Winter 2012

Including slides developed in part by Ruth Anderson, James Fogarty, Dan Grossman, Richard Ladner, Steve Seitz

Single Source Shortest Paths

- Done: BFS for minimum path length from v to u in time O(|E|+(|V|))
- Actually, can find the minimum path length from v to every node
 Still O(|E|+(|V|)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node **v**, find the minimum-cost path from **v** to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if *edges* can be negative

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science; this is just one of his many contributions
 - Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
 - A priority queue will prove useful for efficiency
 - Grow set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it! But we need to prove it produces correct answers

The Algorithm

- 1. For each node v, set v.cost = ∞ and v.known = false
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node \mathbf{v} with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
}</pre>

Important Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it might still be found

Order Added to Known Set:

vertex	known?	cost	path
А			
В			
С			
D			
E			
F			
G			
Н			

Order Added to Known Set:

vertex	known?	cost	path
А		0	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

А

vertex	known?	cost	path
А	Y	0	
В		≤ 2	А
С		≤ 1	А
D		≤ 4	А
E		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C

vertex	known?	cost	path
А	Y	0	
В		≤ 2	A
С	Y	1	A
D		≤ 4	А
E		≤ 12	С
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C, B

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D		≤ 4	А
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D, F

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		??	
Н		≤7	F

Order Added to Known Set:

A, C, B, D, F, H

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Y	7	F

Order Added to Known Set:

A, C, B, D, F, H, G

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E		≤ 11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Important Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it might still be found

Interpreting the Results

• Now that we're done, how do we get the path from, say, A to E?

Stopping Short

- How would this have worked differently if we were only interested in:
 - the path from A to G?
 - the path from A to E?

Order Added to Known Set:

vertex	known?	cost	path
А		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Order Added to Known Set:

Y Α 0 ?? В С ≤ 2 А **≤ 1** D Α ?? Ε ?? F G ??

cost

path

known?

vertex

А

Order Added to Known Set:

A, D

vertex	known?	cost	path
А	Y	0	
В		≤6	D
С		≤ 2	А
D	Y	1	А
Ш		≤ 2	D
F		≤7	D
G		≤ 6	D

Order Added to Known Set:

A, D, C

vertex	known?	cost	path
А	Y	0	
В		≤6	D
С	Y	2	А
D	Y	1	А
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E

vertex	known?	cost	path
А	Y	0	
В		≤ 3	Е
С	Y	2	А
D	Y	1	А
Ш	Y	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B

vertex	known?	cost	path
А	Y	0	
В	Y	3	E
С	Y	2	А
D	Y	1	А
Ш	Y	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F

vertex	known?	cost	path
А	Y	0	
В	Y	3	E
С	Y	2	А
D	Y	1	А
Е	Y	2	D
F	Y	4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F, G

vertex	vertex known?		path
А	Y	0	
В	Y	3	E
С	Y	2	А
D	Y	1	А
Е	Y	2	D
F	Y	4	С
G	Y	6	D

. . .

How will the best-cost-so-far for Y proceed?

Is this expensive?

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
 - An example of a *greedy algorithm*:
 - At each step, irrevocably does what seems best at that step
 - once a vertex is in the known set,
 does not go back and readjust its decision
 - Locally optimal
 - does not always mean globally optimal

Where are We?

- Have described Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need:

When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose v is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - We have selected it, and we only know about paths through the cloud to a node at the edge of the cloud
- Assume the actual shortest path to v is different
 - It is not entirely within the cloud, or else we would know about it
 - So it must use non-cloud nodes
 - Let **w** be the *first* non-cloud node on this path.
 - The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

Improving Asymptotic Running Time

- So far: $O(|V|^2)$
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Improving Asymptotic Running Time

- So far: $O(|V|^2)$
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its position in the priority queue
 - Conceptually simple, but can be a pain to code up

Efficiency, Second Approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
      }
```

Efficiency, Second Approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
                                                       O(|V|)
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                   O(|V|log|V|
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                   O(|E|log|V|)
        decreaseKey(a, "new cost - old cost"
         a.path = b
       }
                                           O(|V|\log|V|+|E|\log|V|)
```

Dense vs. Sparse Again

- First approach: $O(|V|^2)$
- Second approach: O(|V|log|V|+|E|log|V|)
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might rarely call
 decreaseKey (or not percolate far), making |E|log|V| more like |E|

All-Pairs Shortest Path

• Find the shortest path between all pairs of vertices in the graph

• How?

Dynamic Programming

Algorithmic technique that systematically <u>records</u> the answers to sub-problems in a table and <u>re-uses</u> those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.

Fib(N) = Fib(N-1) + Fib(N-2)

Recursion would be insanely expensive, but it is cheap if you already know results of prior computations

Invariant:

After the kth iteration, for all pairs of vertices the matrix includes the shortest path containing only vertices 1..k as intermediate vertices

	а	b	С	d	е
а	0	2	-	-4	-
b	-	0	-2	1	3
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

	а	b	С	d	е
а	0	2	-	-4	-
b	-	0	-2	1	3
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 1

	а	b	С	d	e
а	0	2	-	-4	-
b	-	0	-2	1	3
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 2

	а	b	С	d	е
а	0	2	0	-4	5
b	-	0	-2	1	3
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 2

	а	b	С	d	е
а	0	2	0	-4	5
b	-	0	-2	1	3
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 3

	а	b	С	d	е
а	0	2	0	-4	1
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 3

	а	b	С	d	е
а	0	2	0	-4	1
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

	а	b	С	d	е
а	0	2	0	-4	0
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 4

	а	b	С	d	е
а	0	2	0	-4	0
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

k = 5

Floyd-Warshall

All-Pairs Shortest Path

	а	b	С	d	е
а	0	2	0	-4	0
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

Final Matrix Contents

What Comes Next?

In the logical course progression, we would next study

1. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will

- Start parallelism and concurrency
- Come back to graphs at the end of the course

Note toward the future:

 We cannot do all of graphs last because of the CSE312 co-requisite (needed for study of NP)