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Single Source Shortest Paths 

• Done: BFS for minimum path length from v to u in time O(|E|+(|V|) 

 

• Actually, can find the minimum path length from v to every node   

– Still O(|E|+(|V|) 

– No faster way for a “distinguished” destination in the worst-case 
 

• Now:  Weighted graphs  
 

Given a weighted graph and node v,  

find the minimum-cost path from v to every node  
 

• As before, asymptotically no harder than for one destination 

• Unlike before, BFS will not work 



Not as Easy 

Why BFS won’t work: Shortest path may not have the fewest edges 

– Annoying when this happens with costs of flights 
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• Problem is ill-defined if there are negative-cost cycles 
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Dijkstra’s Algorithm 

• Named after its inventor Edsger Dijkstra (1930-2002) 

– Truly one of the “founders” of computer science;  

this is just one of his many contributions 

– Sample quotation: “computer science is no more  

about computers than astronomy is about telescopes” 

 

• The idea: reminiscent of BFS, but adapted to handle weights 

– A priority queue will prove useful for efficiency 

– Grow set of nodes whose shortest distance has been computed 

– Nodes not in the set will have a “best distance so far” 

 

 



     

Dijkstra’s Algorithm: Idea 

• Initially, start node has cost 0 and all other nodes have cost  
 

• At each step: 

– Pick closest unknown vertex v 

– Add it to the “cloud” of known vertices 

– Update distances for nodes with edges from v 
 

• That’s it!   But we need to prove it produces correct answers 
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The Algorithm 

1. For each node v, set  v.cost =  and v.known = false 

2. Set source.cost = 0 

3. While there are unknown nodes in the graph 

a) Select the unknown node v with lowest cost 

b) Mark v as known 

c) For each edge (v,u) with weight w, 

      c1 = v.cost + w // cost of best path through v to u    

     c2 = u.cost   // cost of best path to u previously known 

           if(c1 < c2){ // if the path through v is better 

          u.cost = c1 

                u.path = v // for computing actual paths 

      } 

  



Important Features 

 

• When a vertex is marked known,  

the cost of the shortest path to that node is known 

– The path is also known by following back-pointers 

 

 

• While a vertex is still not known,  

another shorter path to it might still be found 
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Important Features 

 

• When a vertex is marked known,  

the cost of the shortest path to that node is known 

– The path is also known by following back-pointers 

 

 

• While a vertex is still not known,  

another shorter path to it might still be found 



Interpreting the Results 

• Now that we’re done, how do we get the path from, say, A to E? 
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Stopping Short 

• How would this have worked differently if we were only interested in: 

– the path from A to G? 

– the path from A to E? 
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Example #3 
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A Greedy Algorithm 

• Dijkstra’s algorithm 

– For single-source shortest paths in a weighted graph  

(directed or undirected) with no negative-weight edges 

 

– An example of a greedy algorithm:  

• At each step, irrevocably does what seems best at that step 

– once a vertex is in the known set,  

does not go back and readjust its decision 

• Locally optimal 

– does not always mean globally optimal 

 



Where are We? 

• Have described Dijkstra’s algorithm 

– For single-source shortest paths in a weighted graph (directed 

or undirected) with no negative-weight edges 

 

• What should we do after learning an algorithm? 

– Prove it is correct 

• Not obvious! 

• We will sketch the key ideas 

– Analyze its efficiency 

• Will do better by using a data structure we learned earlier! 



Correctness: Intuition 

Rough intuition:  

 

All the “known” vertices have the correct shortest path 

– True initially: shortest path to start node has cost 0 

– If it stays true every time we mark a node “known”,  

then by induction this holds and eventually everything is “known” 

 

Key fact we need:  

When we mark a vertex “known” we won’t discover a shorter path later! 

– This holds only because Dijkstra’s algorithm  

picks the node with the next shortest path-so-far 

– The proof is by contradiction… 



Correctness: The Cloud (Rough Sketch) 

 

 

    The Known 
Cloud 

v Next shortest path from  

inside the known cloud 

w 

Better path to 

v?  No! 

Source 

Suppose v is the next node to be marked known (“added to the cloud”) 

• The best-known path to v must have only nodes “in the cloud” 

– We have selected it, and we only know about paths  

through the cloud to a node at the edge of the cloud 

• Assume the actual shortest path to v is different 

– It is not entirely within the cloud, or else we would know about it 

– So it must use non-cloud nodes 

– Let w be the first non-cloud node on this path.   

– The part of the path up to w is already known and must be shorter than the 

best-known path to v.  So v would not have been picked.  Contradiction. 



Efficiency, First Approach 

Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 

 
dijkstra(Graph G, Node start) { 

  for each node: x.cost=infinity, x.known=false 

  start.cost = 0 

  while(not all nodes are known) { 

    b = find unknown node with smallest cost 

    b.known = true 

    for each edge (b,a) in G 

     if(!a.known) 

       if(b.cost + weight((b,a)) < a.cost){ 

         a.cost = b.cost + weight((b,a)) 

         a.path = b 

       } 

} 



Efficiency, First Approach 

Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 

 
dijkstra(Graph G, Node start) { 

  for each node: x.cost=infinity, x.known=false 

  start.cost = 0 

  while(not all nodes are known) { 

    b = find unknown node with smallest cost 

    b.known = true 

    for each edge (b,a) in G 

     if(!a.known) 

       if(b.cost + weight((b,a)) < a.cost){ 

         a.cost = b.cost + weight((b,a)) 

         a.path = b 

       } 

} 

O(|V|) 

O(|V|2) 

O(|E|) 

O(|V|2) 



Improving Asymptotic Running Time 

• So far: O(|V|2) 

 

• We had a similar “problem” with topological sort being O(|V|2) 

due to each iteration looking for the node to process next 

– We solved it with a queue of zero-degree nodes 

– But here we need the lowest-cost node and costs can 

change as we process edges 

 

• Solution? 

 



Improving Asymptotic Running Time 

• So far: O(|V|2) 
 

• We had a similar “problem” with topological sort being O(|V|2) 

due to each iteration looking for the node to process next 

– We solved it with a queue of zero-degree nodes 

– But here we need the lowest-cost node and costs can 

change as we process edges 
 

• Solution? 

– A priority queue holding all unknown nodes, sorted by cost 

– But must support decreaseKey operation 

• Must maintain a reference from each node to its position 

in the priority queue 

• Conceptually simple, but can be a pain to code up 

 



Efficiency, Second Approach 

Use pseudocode to determine asymptotic run-time 

2/11/2011 40 

dijkstra(Graph G, Node start) { 

  for each node: x.cost=infinity, x.known=false 

  start.cost = 0 

  build-heap with all nodes 

  while(heap is not empty) { 

    b = deleteMin() 

    b.known = true 

    for each edge (b,a) in G 

     if(!a.known) 

      if(b.cost + weight((b,a)) < a.cost){ 

        decreaseKey(a,“new cost – old cost”) 

       a.path = b 

      } 

} 



Efficiency, Second Approach 

Use pseudocode to determine asymptotic run-time 

dijkstra(Graph G, Node start) { 

  for each node: x.cost=infinity, x.known=false 

  start.cost = 0 

  build-heap with all nodes 

  while(heap is not empty) { 

    b = deleteMin() 

    b.known = true 

    for each edge (b,a) in G 

     if(!a.known) 

      if(b.cost + weight((b,a)) < a.cost){ 

        decreaseKey(a,“new cost – old cost”) 

       a.path = b 

      } 

} 

O(|V|) 

O(|V|log|V|) 

O(|E|log|V|) 

O(|V|log|V|+|E|log|V|) 



Dense vs. Sparse Again 

• First approach: O(|V|2) 
 

• Second approach: O(|V|log|V|+|E|log|V|) 
 

• So which is better? 

– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|)) 

– Dense: O(|V|2) 
 

• But, remember these are worst-case and asymptotic 

– Priority queue might have slightly worse constant factors 

– On the other hand, for “normal graphs”, we might rarely call 
decreaseKey (or not percolate far), making |E|log|V| more like |E| 

 



All-Pairs Shortest Path 

• Find the shortest path between all pairs of vertices in the graph 

 

 

• How? 



Dynamic Programming 

Algorithmic technique that systematically records the answers  

to sub-problems in a table and re-uses those recorded results  

(rather than re-computing them). 

 

Simple Example: Calculating the Nth Fibonacci number. 

 

 Fib(N) = Fib(N-1) + Fib(N-2) 

 

Recursion would be insanely expensive,  

but it is cheap if you already know results of prior computations 



Floyd-Warshall 

for (int k = 1; k =< V; k++) 

 for (int i = 1; i =< V; i++) 

 for (int j = 1; j =< V; j++) 

  if ( ( M[i][k]+ M[k][j] ) < M[i][j] ) 

 M[i][j] =   M[i][k]+ M[k][j]  

Invariant:  

After the kth iteration, for all pairs of vertices the matrix includes the 

shortest path containing only vertices 1..k as intermediate vertices 
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What Comes Next? 

In the logical course progression, we would next study 

 

1. Minimum spanning trees 

 

But to align lectures with projects and homeworks, instead we will 

• Start parallelism and concurrency 

• Come back to graphs at the end of the course 

 

Note toward the future: 

– We cannot do all of graphs last because  

of the CSE312 co-requisite (needed for study of NP) 


