CSE332: Data Abstractions

Lecture 22: Minimum Spanning Trees

James Fogarty
Winter 2012

Making Connections

You have a set of nodes (numbered 1-9) on a network. You are given a sequence of pairwise connections between them:

$$
\begin{aligned}
& 3-5 \\
& 4-2 \\
& 1-6 \\
& 5-7 \\
& 4-8 \\
& 3-7
\end{aligned}
$$

Q: Are nodes 2 and 4 connected? Indirectly?
Q: How about nodes 3 and 8 ?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

Making Connections

Answering these questions is much easier if we create disjoint sets of nodes that are connected:

```
Start: {1} {2} {3} {4} {5} {6} {7} {8} {9}
3-5 {1} {2} {3,5} {4} {6} {7}{8}{9}
4-2 {1} {2, 4} {3,5}{6}{7} {8} {9}
1-6 {1, 6} {2, 4} {3,5} {7} {8} {9}
5-7 {1, 6} {2, 4}{3, 5, 7} {8} {9}
4-8 {1,6} {2, 4, 8} {3, 5, 7} {9}
3-7
```

Q: Are nodes 2 and 4 connected? Indirectly?
Q: How about nodes 3 and 8 ?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

Union-Find aka Disjoint Set ADT

- Union($\mathbf{x , y}$) - take the union of two sets named x and y
- Given sets: $\{3, \underline{5}, 7\}$, $\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
- Union(5,1)

Result: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
To perform the union operation, we replace sets x and y by $(x \cup y)$

- $\operatorname{Find}(\mathbf{x})$ - return the name of the set containing x.
- Given sets: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- Find(1) returns 5
- Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case $\mathrm{O}(\log n$) for an individual Find operation).

Cute Application

- Build a random maze by erasing edges.

Cute Application

- Pick Start and End

Cute Application

- Repeatedly pick random edges to delete.

Number the Cells

Disjoint sets $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$, each cell is unto itself. We have all edges $\mathbf{W}=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ walls total.

Maze Building with Disjoint Union/Find

- Algorithm sketch:
- Choose wall at random.
- Boundary walls are not in wall list, because we cannot delete them
- Erase wall if the neighbors are in disjoint sets
- Avoids cycles
- Take union of those sets
- Repeat until there is only one set
- Every cell reachable from every other cell

A Hidden Tree

Up-Tree for Disjoin Union/Find

Initial

State

Intermediate state

Find Operation

- Find (x) : follow x to the root and return the root

$\operatorname{Find}(6)=7$

Union Operation

- Union(i,j): assuming i and j roots, point i to j .

Simple Implementation

- Array of indices

$$
\begin{array}{l|l|l|l|l|l|l|}
& \mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}
$$

$\mathbf{U p}[\mathbf{x}]=$
0 means
x is a root

Weighted Union

- Weighted Union
- Instead of arbitrarily joining two roots, always point the smaller root to the larger root

Elegant Array Implementation

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Analyzing Disjoint Sets

- For n elements, total cost of m finds, at most $n-1$ unions
- Total work is: $O(m+n)$, i.e. $O(1)$ amortized
- With $O(1)$ worst-case for union
- And $O(\log n)$ worst-case for find
- Find and union cannot both be worst-case $O(1)$

Spanning Trees

- A simple problem: Given a connected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a minimal subset of the edges such that the graph is still connected
- A graph G2=(V,E2) such that G2 is connected and removing any edge from E2 makes G2 disconnected

Observations

1. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected
4. A tree with $|\mathbf{V}|$ nodes has $|\mathbf{V}|-1$ edges

- Every spanning tree solution has $|\mathbf{V}|-\mathbf{1}$ edges

Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
- Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: Road network if you cared about asphalt cost

This is the minimum spanning tree problem

- Will do that next, after intuition from the simpler case

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that doesn't create a cycle

Spanning Tree via DFS

```
spanning_tree(Graph G) {
    for each node i: i.marked = false
    for some node i: f(i)
}
f(Node i) {
    i.marked = true
    for each j adjacent to i:
        if(!j.marked) {
        add(i,j) to output
        f(j) // DFS
        }
}
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O(|E|)$

Example

Stack
f(1)

Output:

Example

Stack
f(1)
f(2)

Output: $(1,2)$

Example

Stack
f(1)
f(2)
f(7)

Output: $(1,2),(2,7)$

Example

Stack
f(1)
f(2)
f(7)
f(5)

Output: $(1,2),(2,7),(7,5)$

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Output: (1,2), (2,7), (7,5), (5,4)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4) f(6)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree (or else it would have created a cycle)
- The graph is connected, we consider all edges

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output:

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6)$,

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6),(5,7)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$ 2

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Can stop once we
Output: $(1,2),(3,4),(5,6),(5,7),(1,5),(2,3)$ have |V|-1 edges

Cycle Detection

- To decide if an edge could form a cycle is $O(|\mathbf{V}|)$ because we may need to traverse all edges already in the output
- So overall algorithm would be $O(|\mathbf{V}||\mathrm{E}|)$
- But there is a faster way using the disjoint-set ADT
- Initially, each item is in its own 1-element set
- find (u): what set contains u ?
- union (u, v) : union (combine) the sets containing u and v

Aside: Union-Find aka Disjoint Set ADT

- Union(\mathbf{x}, \mathbf{y}) - take the union of two sets named x and y
- Given sets: $\{3, \underline{5}, 7\}$, $\{4,2, \underline{8}\},\{\underline{9}\},\{1,6\}$
- Union(5,1)

Result: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
To perform the union operation, we replace sets x and y by $(x \cup y)$

- $\operatorname{Find}(\mathbf{x})$ - return the name of the set containing x.
- Given sets: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- Find(1) returns 5
- Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case $\mathrm{O}(\log n$) for an individual Find operation).

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: $\quad u$ and v are connected in output-so-far
iff
u and v in the same set

- Initially, each node is in its own set
- When processing edge (u, v):
- If find (u) ==find (v), then do not add the edge
- Else add the edge and union (u,v)

Summary so Far

The spanning-tree problem

- Add nodes to partial tree approach is $O(|\mathbf{E}|)$
- Add acyclic edges approach is $O(|\mathbf{E}| \log |\mathbf{V}|)$
- Using the disjoint-set ADT "as a black box"

But really want to solve the minimum-spanning-tree problem

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be $O(|E| \log |\mathbf{V}|)$

Getting to the Point

Algorithm \#1
Shortest-path is to Dijkstra's Algorithm
as
Minimum Spanning Tree is to Prim's Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm \#2
Kruskal's Algorithm for Minimum Spanning Tree is
Exactly our forest-merging approach to spanning tree but process edges in cost order

Prim's Algorithm Idea

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight that connects "known" to "unknown."

Recall Dijkstra picked "edge with closest known distance to source."

- But that is not what we want here
- Otherwise identical
- Feel free to look back and compare

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Choose any node v.
a) Mark v as known
b) For each edge (\mathbf{v}, u) with weight w , set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark vas known and add (v, v.prev) to output
c) For each edge (\mathbf{v}, u) with weight w ,

$$
\begin{gathered}
\text { if }(w<u \cdot \cos t)\{ \\
\text { u.cost }=w ; \\
\text { u.prev }=v ;
\end{gathered}
$$

Example

vertex	known?	cost	prev
A		$? ?$	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		2	A
D		1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		1	D
D	Y	1	A
E		1	D
F		6	D
G		5	D

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		2	C
G		5	D

Example

vertex	known?	cost	prev
A	Y	0	
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G		3	E

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G	Y	3	E

Analysis

- Correctness
- Intuitively similar to Dijkstra
- Run-time
- Same as Dijkstra
- $O(|E| \log |V|)$ using a priority queue

Kruskal's Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

- But now consider the edges in order by weight

So:

- Sort edges: $O(|E| \log |E|)=O(|E| \log |V|)$
- Iterate through edges using union-find for cycle detection $O(|\mathbf{E}| \log |\mathbf{V}|)$

Somewhat better:

- Floyd's algorithm to build min-heap with edges $O(|E|)$
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge $O(|E| \log |\mathrm{V}|)$
- Not better worst-case asymptotically, but often stop long before considering all edges

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1

- Consider next smallest edge (u, v)
- if find (u, v) indicates u and v are in different sets
- output (u,v)
- union (u,v)

Recall invariant:
u and v in same set if and only if connected in output-so-far

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)
Sets: (A) (B) (C) (D) (E) (F) (G)
Output:

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)
Sets: (A, D) (B) (C) (E) (F) (G)
Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)
Sets: (A, C, D) (B) (E) (F) (G)
Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: $(D, G),(B, D)$
6: (D, F)
10: (F, G)
Sets: (A, C, D) (B, E) (F) (G)
Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: $(D, G),(B, D)$
6: (D, F)
10: (F, G)
Sets: (A, B, C, D, E) (F) (G)
Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: $(D, G),(B, D)$
6: (D, F)
10: (F, G)
Sets: (A, B, C, D, E) (F) (G)
Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: $(D, G),(B, D)$
6: (D, F)
10: (F, G)
Sets: (A, B, C, D, E, F) (G)
Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: $(D, G),(B, D)$
6: (D, F)
10: (F, G)
Sets: (A, B, C, D, E, F) (G)
Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: $(A, D),(C, D),(B, E),(D, E)$
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: $(D, G),(B, D)$
6: (D, F)
10: (F, G)
Sets: (A, B, C, D, E, F, G)
Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Analysis

- Correctness
- That it is a spanning tree
- When we add an edge, it adds a vertex to the tree (or else it would have created a cycle)
- The graph is connected, we consider all edges
- That it is minimum
- By induction
- At every step, the output is a subset of a minimum tree
- Run-time
- $O(|E| \log |V|)$

