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Making Connections 

You have a set of nodes (numbered 1-9) on a network.  You 
are given a sequence of pairwise connections between them: 

 

 3-5 

 4-2 

 1-6 

 5-7  

 4-8 

 3-7 

 

Q: Are nodes 2 and 4 connected?  Indirectly? 

Q: How about nodes 3 and 8? 

Q: Are any of the paired connections redundant due to 

     indirect connections? 

Q: How many sub-networks do you have? 



Making Connections 

Answering these questions is much easier if we create 
disjoint sets of nodes that are connected: 

 

 Start: {1} {2} {3} {4} {5} {6} {7} {8} {9} 

 3-5 

 4-2 

 1-6 

 5-7  

 4-8 

 3-7 

 

Q: Are nodes 2 and 4 connected?  Indirectly? 

Q: How about nodes 3 and 8? 

Q: Are any of the paired connections redundant due to 

     indirect connections? 

Q: How many sub-networks do you have? 

{1} {2} {3, 5} {4} {6} {7} {8} {9} 

{1} {2, 4} {3, 5} {6} {7} {8} {9} 

{1, 6} {2, 4} {3, 5} {7} {8} {9} 

{1, 6} {2, 4} {3, 5, 7} {8} {9} 

{1, 6} {2, 4, 8} {3, 5, 7} {9} 

 

 

 



Union-Find aka Disjoint Set ADT 

• Union(x,y) – take the union of two sets named x and y 

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6} 

– Union(5,1) 

Result: {3,5,7,1,6}, {4,2,8}, {9},  

To perform the union operation, we replace sets x and y by  (x  y) 

 

• Find(x) – return the name of the set containing x. 

– Given sets: {3,5,7,1,6}, {4,2,8}, {9},  

– Find(1) returns 5 

– Find(4) returns 8 

 

• We can do Union in constant time.  

• We can get Find to be amortized constant time  

 (worst case O(log n) for an individual Find operation). 

 



Cute Application 

• Build a  random maze by erasing edges. 



Cute Application 

• Pick Start and End 

Start 

End 



Cute Application 

• Repeatedly pick random edges to delete. 

Start 

End 



Number the Cells 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Disjoint sets S ={ {1}, {2}, {3}, {4},… {36} },  each cell is unto itself. 

We have all edges W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total. 



Maze Building with Disjoint Union/Find 

• Algorithm sketch: 

– Choose wall at random. 

• Boundary walls are not in wall list,  

because we cannot delete them 

– Erase wall if the neighbors are in disjoint sets 

• Avoids cycles 

– Take union of those sets 

– Repeat until there is only one set 

• Every cell reachable from every other cell 

 

 

 



A Hidden Tree 

Start 

End 



Up-Tree for Disjoin Union/Find 

1 2 3 4 5 6 7 Initial 

State 

1 

2 

3 

4 5 

6 

7 Intermediate 

state 

Roots are the names of each set 



Find Operation 

• Find(x): 
follow x to the root and return the root 

1 

2 

3 

4 5 

6 

7 

Find(6) = 7 



Union Operation 

• Union(i,j): 

assuming i and j roots, point i to j. 

1 

2 

3 

4 5 

6 

7 

Union(1,7) 



Simple Implementation 

• Array of indices 

1 

2 

3 

4 5 

6 

7 

0 1 0 7 7 5 0 

1   2    3   4   5   6   7 

up 

Up[x] =  

0 means 

x is a root 



Weighted Union 

• Weighted Union 

– Instead of arbitrarily joining two roots,  
always point the smaller root to the larger root 

1 

2 

3 

4 5 

6 

7 

Union(1,7) 

2 4 1 



Elegant Array Implementation 

1 

2 

3 

4 5 

6 

7 
2 4 1 

0 

2 

1 0 

1 

7 7 5 0 

4 

1   2   3  4  5   6   7   

up 

weight 



Path Compression 

• On a Find operation point all the nodes on the 
search path directly to the root. 

1 

2 

3 

4 5 

6 

7 1 

2 3 4 5 6 

7 

Find(3) 

8 9 

10 

8 9 10 



Analyzing Disjoint Sets 

• For n elements, total cost of m finds, at most n-1 unions 
 

• Total work is: O(m+n), i.e. O(1) amortized 

– With O(1) worst-case for union 

– And O(log n) worst-case for find 

 

• Find and union cannot both be worst-case O(1) 



Spanning Trees 

• A simple problem: Given a connected graph G=(V,E), find a 

minimal subset of the edges such that the graph is still connected 

– A graph G2=(V,E2) such that G2 is connected  

and removing any edge from E2 makes G2 disconnected 



Observations 

1. Any solution to this problem is a tree 

– Recall a tree does not need a root; just means acyclic 

– For any cycle, could remove an edge and still be connected 

 

2. Solution not unique unless original graph was already a tree 

 

3. Problem ill-defined if original graph not connected 

 

4. A tree with |V| nodes has |V|-1 edges 

– Every spanning tree solution has |V|-1 edges 



Motivation 

A spanning tree connects all the nodes with as few edges as possible 
 

• Example: A “phone tree” so everybody gets the  

message and no unnecessary calls get made 

– Bad example since would prefer a balanced tree 
 

In most compelling uses, we have a weighted  

undirected graph and we want a tree of least total cost  

• Example: Electrical wiring for a house or clock wires on a chip 

• Example: Road network if you cared about asphalt cost 

 

This is the minimum spanning tree problem 

– Will do that next, after intuition from the simpler case 



Two Approaches 

Different algorithmic approaches to the spanning-tree problem: 

1. Do a graph traversal  

(e.g., depth-first search, but any traversal will do),  

keeping track of edges that form a tree 

2. Iterate through edges;  

add to output any edge that doesn’t create a cycle 



Spanning Tree via DFS 
spanning_tree(Graph G) { 

  for each node i: i.marked = false 

  for some node i: f(i) 

} 

f(Node i) { 

  i.marked = true 

  for each j adjacent to i: 

   if(!j.marked) { 

      add(i,j) to output 

      f(j) // DFS 

    } 

} 

   

Correctness: DFS reaches each node.  We add one edge to connect it 

 to the already visited nodes.  Order affects result, not correctness. 
 

Time: O(|E|) 



Example 

Stack 

f(1) 1 

2 

3 

4 

5 

6 

7 

Output: 



Example 

Stack 

f(1) 

f(2) 
1 

2 

3 

4 

5 

6 

7 

Output:  (1,2) 



Example 

Stack 

f(1) 

f(2) 

f(7) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7) 



Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5) 



Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4) 



Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4) 

f(3) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4),(4,3) 



Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4)  f(6) 

f(3) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4)  f(6) 

f(3) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6) 



Second Approach 

Iterate through edges; output any edge that does not create a cycle 

 

Correctness (hand-wavy): 

– Goal is to build an acyclic connected graph 

– When we add an edge, it adds a vertex to the tree 

(or else it would have created a cycle) 

– The graph is connected, we consider all edges 

 

Efficiency: 

– Depends on how quickly you can detect cycles 

– Reconsider after the example 

 



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: 



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2) 



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4) 



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6),  



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7)  



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  



Example 

Edges in some arbitrary order: 

  (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we 

have |V|-1 edges 



Cycle Detection 

• To decide if an edge could form a cycle is O(|V|)  

because we may need to traverse all edges already in the output 

 

• So overall algorithm would be O(|V||E|) 

 

• But there is a faster way using the disjoint-set ADT 

– Initially, each item is in its own 1-element set 

– find(u): what set contains u?  

– union(u,v): union (combine) the sets containing u and v 

 

 
 



Aside: Union-Find aka Disjoint Set ADT 

• Union(x,y) – take the union of two sets named x and y 

– Given sets: {3,5,7} , {4,2,8}, {9}, {1,6} 

– Union(5,1) 

Result: {3,5,7,1,6}, {4,2,8}, {9},  

To perform the union operation, we replace sets x and y by  (x  y) 

 

• Find(x) – return the name of the set containing x. 

– Given sets: {3,5,7,1,6}, {4,2,8}, {9},  

– Find(1) returns 5 

– Find(4) returns 8 

 

• We can do Union in constant time.  

• We can get Find to be amortized constant time  

 (worst case O(log n) for an individual Find operation). 

 



Using Disjoint-Set 

Can use a disjoint-set implementation  

in our spanning-tree algorithm to detect cycles: 
 

Invariant:  u and v are connected in output-so-far  

     iff  

        u and v in the same set 

 

• Initially, each node is in its own set 

• When processing edge (u,v): 

– If find(u)==find(v), then do not add the edge 

– Else add the edge and union(u,v) 



Summary so Far 

The spanning-tree problem 

– Add nodes to partial tree approach is O(|E|) 

– Add acyclic edges approach is O(|E| log |V|) 

• Using the disjoint-set ADT “as a black box” 

 

But really want to solve the minimum-spanning-tree problem 

– Given a weighted undirected graph,  

give a spanning tree of minimum weight 

– Same two approaches will work with minor modifications 

– Both will be O(|E| log |V|) 

 



Getting to the Point 

Algorithm #1 

Shortest-path is to Dijkstra’s Algorithm 

as 

Minimum Spanning Tree is to Prim’s Algorithm 

(Both based on expanding cloud of known vertices,  

basically using a priority queue instead of a DFS stack) 

 

Algorithm #2 

Kruskal’s Algorithm for Minimum Spanning Tree 

is 

Exactly our forest-merging approach to spanning tree  

but process edges in cost order 

 

 

 

 



Prim’s Algorithm Idea 

Idea: Grow a tree by adding an edge from the “known” vertices to the 

“unknown” vertices.  Pick the edge with the smallest weight that 

connects “known” to “unknown.” 
 

 

Recall Dijkstra picked “edge with closest known distance to source.”  

– But that is not what we want here 

– Otherwise identical 

– Feel free to look back and compare 

 

 

 

 



The Algorithm 

1. For each node v, set  v.cost =  and v.known = false 

2. Choose any node v.  

a) Mark v as known 

b) For each edge (v,u) with weight w,  

set u.cost=w and u.prev=v 

3. While there are unknown nodes in the graph 

a) Select the unknown node v with lowest cost 

b) Mark v as known and add (v, v.prev) to output 

c) For each edge (v,u) with weight w, 

      if(w < u.cost) { 

          u.cost = w; 

     u.prev = v; 

      } 

  



Example 

A B 

C 
D 

F 

E 

G 

 

 

 

 

 

 

2 

1 
2 

vertex known? cost prev 

A ?? 

B ?? 

C ?? 

D ?? 

E ?? 

F ?? 

G ?? 

5 

1 

1 

1 

2 
6 

5 3 

10 

 



Example 

A B 

C 
D 

F 

E 

G 

0 2 

 

2 

1 

 

 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B 2 A 

C 2 A 

D 1 A 

E ?? 

F ?? 

G ?? 

5 

1 

1 

1 

2 
6 

5 3 

10 



Example 

A B 

C 
D 

F 

E 

G 

0 2 

6 

2 

1 

1 

5 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B 2 A 

C 1 D 

D Y 1 A 

E 1 D 

F 6 D 

G 5 D 

5 

1 

1 

1 

2 
6 

5 3 

10 



Example 

A B 

C 
D 

F 

E 

G 

0 2 

2 

2 

1 

1 

5 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B 2 A 

C Y 1 D 

D Y 1 A 

E 1 D 

F 2 C 

G 5 D 

5 

1 

1 

1 

2 
6 

5 3 

10 



Example 

A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 

1 

3 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B 1 E 

C Y 1 D 

D Y 1 A 

E Y 1 D 

F 2 C 

G 3 E 

5 

1 

1 

1 

2 
6 

5 3 

10 



Example 

A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 

1 

3 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B Y 1 E 

C Y 1 D 

D Y 1 A 

E Y 1 D 

F 2 C 

G 3 E 

5 

1 

1 

1 

2 
6 

5 3 

10 



Example 

A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 

1 

3 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B Y 1 E 

C Y 1 D 

D Y 1 A 

E Y 1 D 

F Y 2 C 

G 3 E 

5 

1 

1 

1 

2 
6 

5 3 

10 



Example 

A B 

C 
D 

F 

E 

G 

0 1 

2 

2 

1 

1 

3 

2 

1 
2 

vertex known? cost prev 

A Y 0 

B Y 1 E 

C Y 1 D 

D Y 1 A 

E Y 1 D 

F Y 2 C 

G Y 3 E 

5 

1 

1 

1 

2 
6 

5 3 

10 



Analysis 

• Correctness 

– Intuitively similar to Dijkstra 

 

• Run-time 

– Same as Dijkstra 

– O(|E| log |V|) using a priority queue 



Kruskal’s Algorithm 

Idea: Grow a forest out of edges that do not grow a cycle,  

just like for the spanning tree problem.   

– But now consider the edges in order by weight 
 

So:  

– Sort edges: O(|E| log |E|) = O(|E| log |V|) 

– Iterate through edges using union-find for cycle detection 
O(|E| log |V|) 

 

Somewhat better: 

– Floyd’s algorithm to build min-heap with edges O(|E|) 

– Iterate through edges using union-find for cycle detection 
and deleteMin to get next edge O(|E| log |V|) 

– Not better worst-case asymptotically,  

but often stop long before considering all edges 



Pseudocode 

1. Sort edges by weight (better: put in min-heap) 

2. Each node in its own set 

3. While output size < |V|-1 

– Consider next smallest edge (u,v) 

– if find(u,v) indicates u and v are in different sets 

•  output (u,v) 

•  union(u,v) 

 

Recall invariant:  

 u and v in same set if and only if connected in output-so-far 

 

 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A) (B) (C) (D) (E) (F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, D) (B) (C) (E) (F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, C, D) (B) (E) (F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D), (B,E) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, C, D) (B, E) (F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, B, C, D, E) (F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, B, C, D, E) (F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, B, C, D, E, F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, B, C, D, E, F) (G) 



Example  

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 

1 

1 

2 
6 

5 3 

10 

Edges in sorted order: 

1:  (A,D), (C,D), (B,E), (D,E) 

2:  (A,B), (C,F), (A,C) 

3:  (E,G) 

5:  (D,G), (B,D) 

6:  (D,F) 

10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 

Sets: (A, B, C, D, E, F, G) 



Analysis 

• Correctness 

– That it is a spanning tree 

• When we add an edge, it adds a vertex to the tree 

(or else it would have created a cycle) 

• The graph is connected, we consider all edges 

– That it is minimum 

• By induction 

• At every step, the output is a subset of a minimum tree 

 

• Run-time 

– O(|E| log |V|) 


