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The Good News

* You have learned a set of tools that allow you to think about,
and talk about, a wide variety of computing problems



CueFlik: Learning Image Similarity

1-(12/(12 + 48)) = 75% likely a
‘product’ image

AAAI 2011, Amershi et al.
CHI 2010, Amershi et al.
UIST 2009, Amershi et al.
CHI 2008, Fogarty et al.



How Can We Decide Which are Positive?
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KNN Graph

« Compute pairwise distance between every pair
(using domain knowledge to determine the distance metric)

* Preserve edges corresponding only to the k nearest neighbors
of each vertex in the graph

 Run a search from your positive and negative examples,
classify each based on whichever is closer

« KNN greatly reduces |E|, from [V?] to k|V| (i.e., dense to sparse)

* The classification strategy is also semi-supervised,
respecting the distribution of your data

— Imagine two interlocking spirals



How About Now?
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Disconnected Graph

« The KNN transformation does not necessarily
preserve a path between your labels and all of your data

* You have to decide what this means and what to do about it

* What kinds of tools can you work with?



How Can We Choose a Representative Set?



The Bad News

 We do not know how to efficiently the items which are
“the most representative subset of these elements”

« Our implementation is greedy
— Choose single most representative item
— Given that choice, choose another
— Repeat until desired number of items

« |t gets worse, there are many such problems
— Learn about P and NP in CSE 312



Some Better News

 We have lots of cool algorithms, not just those you have seen



Amortized Algorithms

* Recall our stack implemented as an array
— Doubles its size if it runs out of room
— How can we claim push is O(1) time if resizing is O(n) time?
— We cannot, but we can claim it's an O(1) amortized operation

We will just do a simple example
— There are entire families of data structures based on this
— The text has more complicated examples and proof techniques
— The idea of how amortized describes average cost is essential



Amortized Complexity

If a sequence of M operations takes O(M £ (n)) time,
we say the amortized runtime is O(£ (n))

 The worst case time per operation can be larger than £ (n)
— For example, maybe £ (n) =1, but the worst-case is n

« But the worst-case for any sequence of M operations is O(M £ (n))

« Amortized guarantee ensures the average time
per operation for any sequence is O(£ (n))

— This is a stronger guarantee than “average case” O(£ (n))



Amount of Copying in a “Doubling” Stack

!

After M operations, we have done < 2M total element copies

Let n be the size of the array after M operations
— Then we’ve done a total of:
n/2 + n/4 + n/8 + .. INITIAL SIZE < n

element copies

— We must have done at least enough push operations
to cause resizing up to size n:

M > n/2
— So
2M > n > number of element copies



Other Approaches to Growing / Shrinking

« If array grows by a constant amount (say 100),
operations are not amortized O(1)

— After 1000 operations, you may have done
900 + 800 + 700 + ... + 300 + 200 + 100 copies (i.e., N?)

« If array shrinks when 1/2 empty, operations are not amortized O(1)
— pop and shrink, push and grow, pop and shrink, ...

« |If array shrinks when 3/4 empty, it is amortized O(1)

— Proof is more complicated, but basic idea remains:
by the time o fan expensive operation, many cheap operations



Splay Tree Basic ldea

All the way to the root!

If you are forcedto
“make a deep access:

Since you are down there,
fix up a lot of deep nodes!

No height “bookkeeping”

Amortized O(log n) operations



Usefulness of Amortized Algorithms

* Proofs are complicated, with “potential functions” to describe how
cheap operations “pay for” later expensive operations

— But this has nothing to do with complexity of the code
— Often simple, with better constant factors

 When the average cost per operation is all we care about
(i.e., sum over all operations), amortized is perfectly fine

— This is a very common situation

« If every operation must finish quickly, amortized bounds are weak
— Real-time software
— Concurrency setting, where you are holding the lock



Range Queries

Project 3 Grouped Census Data into Blocks

 What if you wanted to keep the original data
and efficiently answer queries at arbitrary precision

« Balanced trees can allow accessing on one dimension
— “Give me all blocks between longitudes x and y”
— “Give me all blocks between latitudes x and y”

 But what about access on both dimensions?
— “Give me all blocks in a rectangle”



Range Queries
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Nearest Neighbor Search
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A Challenging Case for 1D Structure
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Quad Trees
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A Really Bad Case




k-d Trees

« Jon Bentley, 1975, while an undergraduate
« Tree used to store spatial data.

— Nearest neighbor search.

— Range queries.

— Fast look-up

» k-d tree are guaranteed log, n depth where n is the number of
points in the set.
— Traditionally, k-d trees store points Iin
d-dimensional space which are equivalent to vectors in d-
dimensional space.



k-d Tree Construction

 If there is just one point, form a leaf with that point
« Otherwise, divide the points in half on one dimension
— Book uses round-robin division

— Could also divide on dimension with greatest spread

« Recursively construct k-d trees for the two sets of points



k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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k-d Tree Construction
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Rectangular Range Query

Recursively search every cell that intersects the rectangle.



Rectangular Range Query
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Rectangular Range Query
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Rectangular Range Query
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Rectangular Range Query
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Rectangular Range Query
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Rectangular Range Query
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Rectangular Range Query
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Rectangular Range Query

sl

”’
"




Rectangular Range Query

sl

”’
"




k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search

B query point
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k-d Tree Nearest Neighbor Search

B query point
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Prefab:
What if Anybody Could Modify Any Interface

- UGy

CHI 2012, Dixon et al.
CHI 2011, Dixon et al.
CHI 2010, Dixon et al.



Edit Ima'g' Layer Select Filter Analysis View Mindow Help

Q - ax | [ Resize Windows To Fit [ Zoom All Windows | Actual Pixels | | Fit Screen | | Print Size |

:-iﬁ Colorx |

a %P:







Prefab CHI 2011 Video



Decomposing Widgets into Their Parts

Windows Vista Steel Button Prototype
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Decomposing Widgets into Their Parts

Mac Slider Prototype




Problem

« Efficiently match a large library of “pixel patches” in images

« Can break this down as a dictionary matching problem
— Match a dictionary of strings in text



Aho-Corasick Algorithm

* Pre-process dictionary to create a finite state machine
— Follow an edge for ever ‘character’
— Output any ‘strings’ when arriving at a node

« Linear in the length of the ‘text’ we examine
— Ignoring pre-processing (which is fine in this application)



Aho-Corasick Algorithm

« Matching a dictionary of pixel rows:

{blue, red}, {blue, green, green},
{blue, red, green, green}, {green, blue, red}

F {blue, green}

{blue, red, green, green}

{blue, green, green} \

A \
\ \
N\ N\

AN AN
{{blue, red}, {green, blue, red}}
\ A\
| \
/ /
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Moral of the Story



