CSE332: Data Abstractions
Lecture 23: Wrapping Up

James Fogarty
Winter 2012

Including slides developed in part by
Ruth Anderson, James Fogarty, Dan Grossman, Richard Ladner, Steve Seitz

The Good News

* You have learned a set of tools that allow you to think about,
and talk about, a wide variety of computing problems

CueFlik: Learning Image Similarity

1-(12/(12 + 48)) = 75% likely a
‘product’ image

AAAI 2011, Amershi et al.
CHI 2010, Amershi et al.
UIST 2009, Amershi et al.
CHI 2008, Fogarty et al.

How Can We Decide Which are Positive?

[]
® ': N PY ‘o '
[® o
¢ .':E?o .. . =, =
' ':E; .° . ! .. ¢ o’ = ' .
e . ¢ .
. » PR b . ‘. . *2 .

KNN Graph

« Compute pairwise distance between every pair
(using domain knowledge to determine the distance metric)

* Preserve edges corresponding only to the k nearest neighbors
of each vertex in the graph

 Run a search from your positive and negative examples,
classify each based on whichever is closer

« KNN greatly reduces |E|, from [V?] to k|V| (i.e., dense to sparse)

* The classification strategy is also semi-supervised,
respecting the distribution of your data

— Imagine two interlocking spirals

How About Now?

- L) L) °® 2
- .
e® @ .
e o ®* o
® & L
L]
... ..
o e ‘e
- ° 'y ®
° =l
e P & @
e ® =o
° e e
0=00
“ o e 8
® oooo
PP e Ve
3
® ooo\
e ° * o
® ooo
e o °
e o °% on
L]
3
3 e
* o .0 * .
oooo ooo
as - oo”
. ® o 9%,
° L -
& e
- L <
°
L]
& o = s
e o e
e o 3 o o
e® o s
o.fon"v_o > e
L]
PO
® []
& LY L
o [
L] pu @

Disconnected Graph

« The KNN transformation does not necessarily
preserve a path between your labels and all of your data

* You have to decide what this means and what to do about it

* What kinds of tools can you work with?

How Can We Choose a Representative Set?

The Bad News

 We do not know how to efficiently the items which are
“the most representative subset of these elements”

« Our implementation is greedy
— Choose single most representative item
— Given that choice, choose another
— Repeat until desired number of items

« |t gets worse, there are many such problems
— Learn about P and NP in CSE 312

Some Better News

 We have lots of cool algorithms, not just those you have seen

Amortized Algorithms

* Recall our stack implemented as an array
— Doubles its size if it runs out of room
— How can we claim push is O(1) time if resizing is O(n) time?
— We cannot, but we can claim it's an O(1) amortized operation

We will just do a simple example
— There are entire families of data structures based on this
— The text has more complicated examples and proof techniques
— The idea of how amortized describes average cost is essential

Amortized Complexity

If a sequence of M operations takes O(M £ (n)) time,
we say the amortized runtime is O(£ (n))

 The worst case time per operation can be larger than £ (n)
— For example, maybe £ (n) =1, but the worst-case is n

« But the worst-case for any sequence of M operations is O(M £ (n))

« Amortized guarantee ensures the average time
per operation for any sequence is O(£ (n))

— This is a stronger guarantee than “average case” O(£ (n))

Amount of Copying in a “Doubling” Stack

!

After M operations, we have done < 2M total element copies

Let n be the size of the array after M operations
— Then we’ve done a total of:
n/2 + n/4 + n/8 + .. INITIAL SIZE < n

element copies

— We must have done at least enough push operations
to cause resizing up to size n:

M > n/2
— So
2M > n > number of element copies

Other Approaches to Growing / Shrinking

« If array grows by a constant amount (say 100),
operations are not amortized O(1)

— After 1000 operations, you may have done
900 + 800 + 700 + ... + 300 + 200 + 100 copies (i.e., N?)

« If array shrinks when 1/2 empty, operations are not amortized O(1)
— pop and shrink, push and grow, pop and shrink, ...

« |If array shrinks when 3/4 empty, it is amortized O(1)

— Proof is more complicated, but basic idea remains:
by the time o fan expensive operation, many cheap operations

Splay Tree Basic ldea

All the way to the root!

If you are forcedto
“make a deep access:

Since you are down there,
fix up a lot of deep nodes!

No height “bookkeeping”

Amortized O(log n) operations

Usefulness of Amortized Algorithms

* Proofs are complicated, with “potential functions” to describe how
cheap operations “pay for” later expensive operations

— But this has nothing to do with complexity of the code
— Often simple, with better constant factors

 When the average cost per operation is all we care about
(i.e., sum over all operations), amortized is perfectly fine

— This is a very common situation

« If every operation must finish quickly, amortized bounds are weak
— Real-time software
— Concurrency setting, where you are holding the lock

Range Queries

Project 3 Grouped Census Data into Blocks

 What if you wanted to keep the original data
and efficiently answer queries at arbitrary precision

« Balanced trees can allow accessing on one dimension
— “Give me all blocks between longitudes x and y”
— “Give me all blocks between latitudes x and y”

 But what about access on both dimensions?
— “Give me all blocks in a rectangle”

Range Queries

g
@) h.
e
% © fo
b
e
3 Co
X

Rectangular query

Circular query

Nearest Neighbor Search

e
g
@) h.
y | d © f
be
3 Co

A Challenging Case for 1D Structure

o0
®o°
@0
o ©
° 0
y| e © %e g0 ":::.‘.o.o ° % o
@ %% o %909 "0 %09 o ©0°

X

Quad Trees

/
[\ / \ /
Jo d| [al]lb] [f
‘e 7\
d fe g €
o
3 be . .
7 Co Recursively divide up the
space as needed to have

only one item at each leaf

A Really Bad Case

k-d Trees

« Jon Bentley, 1975, while an undergraduate
« Tree used to store spatial data.

— Nearest neighbor search.

— Range queries.

— Fast look-up

» k-d tree are guaranteed log, n depth where n is the number of
points in the set.
— Traditionally, k-d trees store points Iin
d-dimensional space which are equivalent to vectors in d-
dimensional space.

k-d Tree Construction

 If there is just one point, form a leaf with that point
« Otherwise, divide the points in half on one dimension
— Book uses round-robin division

— Could also divide on dimension with greatest spread

« Recursively construct k-d trees for the two sets of points

k-d Tree Construction

e
g
@) hO
e

3 © fo

b
a ® C
o ®

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
g
@) hO
e
3 © fo
b
a © C
O O
sl

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
e
3 © fo
s2
b
a © C
O O
sl

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
e
% © fo X
= s3
b
a © C
O O
s3 sl

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
e
% © fo X
= s3
b
O
S Co a
s3 sl

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
Jo y
he S2
e
% © fo X
= s3
b
a ® C a b
[@)
s3 sl

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
Jo y
he s2
s4 e
3 © fo X y
s3 s4
s2
b
a ® C a b
@ @)
s3 sl

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
s4 e
3§ | ° fo X y
S5 s3 s4
s2
b
® ° Co a b7
s3 sl 85

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
s4 e
% | ® fo X y
S5 s3 s4
s2
b
® ° Co a b7
s3 sl 85
X d

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
s4 e
S | fo X y
S5 s3 s4
s2
b
® ° Co a b7
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he S2
s4 e
S | fo X y
S5 s3 s4
s2
b
® ° Co a b g
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
O
Jo y
he s2
s4 e sS6
2 | ° fo X y
S5 53 54
s2
b
® ° Co a b g
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
Jo y
he S2
s4 e sS6
% ® fo X y y
S5 s3 54 s7
s2
b s7
® ° Co a b g
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
Jo y
he s2
s4 e sS6
% ® fo X y y
S5 53 54 S7
s2
b s7
8 ® Co a b [X g c
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
Jo y
he s2
s4 e sS6
% ® o X y y
S5 53 54 S7
s2
b s7
8 ® Co a b [X g c
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
g y
@ s8 hO 37
s4 e sS6
% ® o X y y
S5 s3 54 s7
s2
b s7
8 ® Co a b [X g c
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@)
g y
@ s8 h. 37
s4 e sS6
% ® o X y y
S5 s3 54 s7
s2
b s7
8 ® Co a b [X g c
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

k-d Tree Construction

X
i sl
@
g y
@ s8 h. 37
s4 e sS6
% ® o X y y
S5 s3 54 s7
s2
b s7
8 ® Co a b [X g c
s3 sl 85
X d e

At each step divide perpendicular to the widest spread.

Rectangular Range Query

Recursively search every cell that intersects the rectangle.

Rectangular Range Query

_35 s8
he
s4 sS6
o

L 'y

s5
s2

b, s/
a
Co

sl

Rectangular Range Query

_g' s8
he
s4 e sS6
O

L r'y

sb5
s2

b. s/
a
Co

sl

Rectangular Range Query

_g' s8
he
s4 e sS6
O

L r'y

sb5
s2

b. s/
a
Co

sl

Rectangular Range Query

_g' s8
he
s4 e sS6
O

L r'y

sb5
s2

b. s/
a
Co

sl

Rectangular Range Query

_g' s8
he
s4 e sS6
O

L r'y

S5|
s2

b. s/
a
Co

sl

Rectangular Range Query

S® 8
S h.
s4 e sS6
O
i r'y
55|
s2
a b. s/
Co

sl

Rectangular Range Query

i o -
g() s8 h. Sy2
s4 s6
d €o f
o L o X Y
S° s3 s4
s2
b s7 N4
a © c a b |X
s3 sl
/ \

Rectangular Range Query

sl

”’
"

Rectangular Range Query

sl

”’
"

k-d Tree Nearest Neighbor Search

B query point

s8 h‘

sS6

fo

sl

s’

k-d Tree Nearest Neighbor Search

B query point

s8 h‘

sS6

fo

sl

s’

k-d Tree Nearest Neighbor Search

B query point

s8 h‘

sS6

fo

sl

s’

k-d Tree Nearest Neighbor Search

B query point

e

}d

fo

s’

sl

X
sl
\
S2
\
s4
X
sh

k-d Tree Nearest Neighbor Search

B query point

e

s4

s5

}d

s2

s3

sl

fo

s’

X
sl
\
S2
\
s4
. .
sh

k-d Tree Nearest Neighbor Search

B query point

e

;e/

fo

s’

sl

X
sl
\
S2
\
s4
. .
sh

k-d Tree Nearest Neighbor Search

B query point

Je 8 h
Al
s4 w| 86
% fo
s5
s2
b s7
()
® Co

s3

sl

X
sl
\
S2
\
s4
. .
sh

k-d Tree Nearest Neighbor Search

B query point

as

gu ®

Yo 8 h
Ul e
54 W 6
d f
O O
s5
s2
b s7
O
® o

s3

sl

.
.
.
.
.A

k-d Tree Nearest Neighbor Search

B query point

as

gu ®

Yo 8 h
L
54 W 6
d f
O O
s5
s2
b s7
O
® o

s3

sl

.
.
.
.
.A

k-d Tree Nearest Neighbor Search

B query point

an

gu ®

Yo 8 h
.
54 W €6
d f
O O
s5
s2
b s7
O
® o

s3

sl

.
.
.
.
.A

k-d Tree Nearest Neighbor Search

B query point

an

gu ®

Yo 8 h
s
54 W 26
d f
O O
s5
s2
b s7
O
® Co

s3

sl

.
.
.
.
.A

‘¢
.
“
®

k-d Tree Nearest Neighbor Search

B query point

an

gu ®

Y0 8 h
[wl] e
54 W 6
d f
O O
s5
s2
b s7
O
® Co

s3

sl

.
.
.
.
.A

‘¢
.
“
®

k-d Tree Nearest Neighbor Search

B query point

Ta

s4

d
(&

s5

W

s2

a
@)

s3

as

gu ®

be

sl

.
.
.
.
.A

‘¢
.
“
®

.
.
.
.
.A

Prefab:
What if Anybody Could Modify Any Interface

- UGy

CHI 2012, Dixon et al.
CHI 2011, Dixon et al.
CHI 2010, Dixon et al.

Edit Ima'g' Layer Select Filter Analysis View Mindow Help

Q - ax | [Resize Windows To Fit [Zoom All Windows | Actual Pixels | | Fit Screen | | Print Size |

:-iﬁ Colorx |

a %P:

Prefab CHI 2011 Video

Decomposing Widgets into Their Parts

Windows Vista Steel Button Prototype

< '.h-g-'l' >

OK

£ W N
|

‘ Cancel ‘ [Pay Attention Zorah l

Decomposing Widgets into Their Parts

Mac Slider Prototype

Problem

« Efficiently match a large library of “pixel patches” in images

« Can break this down as a dictionary matching problem
— Match a dictionary of strings in text

Aho-Corasick Algorithm

* Pre-process dictionary to create a finite state machine
— Follow an edge for ever ‘character’
— Output any ‘strings’ when arriving at a node

« Linear in the length of the ‘text’ we examine
— Ignoring pre-processing (which is fine in this application)

Aho-Corasick Algorithm

« Matching a dictionary of pixel rows:

{blue, red}, {blue, green, green},
{blue, red, green, green}, {green, blue, red}

F {blue, green}

{blue, red, green, green}

{blue, green, green} \

A \
\ \
N\ N\

AN AN
{{blue, red}, {green, blue, red}}
\ A\
| \
/ /

7’ s
- -

Moral of the Story

