
1

CSE 332 Spring 2023 Midterm

Name: _____Sample Solution_______________

Email address (UWNetID): __________________________________

Instructions:
● The allotted time is 50 minutes.
● Please do not turn the page until the staff says to do so.
● This is a closed-book and closed-notes exam. You are NOT permitted to access electronic

devices including calculators.
● Read the directions carefully, especially for problems that require you to show work or provide an

explanation.
● When provided, write your answers in the box or on the line provided.
● Unless otherwise noted, every time we ask for an O, Ω, or Θ bound, it must be simplified and

tight.
● Unless otherwise noted, assume all data structures are implemented as described in lecture.

● For answers that involve bubbling in a or , make sure to fill in the shape completely.
● If you run out of room on a page, indicate where the answer continues. Try to avoid writing on the

very edges of the pages: we scan your exams and edges often get cropped off.
● A formula sheet has been included at the end of the exam.

Advice
● If you feel like you’re stuck on a problem, you may want to skip it and come back at the end if you

have time.
● Look at the question titles on the cover page to see if you want to start somewhere other than

problem 1.
● Relax and take a few deep breaths. You’ve got this! :-).

Question #/Topic/Points Page #
Q1: Short-answer questions (20 pts) 2
Q1: (continued) 3
Q2: Code Analysis (16 pts) 4
Q3: O, Ω, and Θ (9 pts) 6
Q4: Write a Recurrence (8 pts) 7
Q5: Solve a Recurrence (10 pts) 8
Q6: AVL (7 pts) 9
Q7: Heaps (7 pts) 11
Q8: B-Trees (8 pts) 12

Total: 85 points

2

Q1: Short-answer questions (20 pts)
● For questions asking you about runtime, give a simplified, tight Big-O bound. This means that, for

example, O(5n2 + 7n+ 3) (not simplified) or O(2n!) (not tight enough) are unlikely to get points.
Unless otherwise specified, all logs are base 2.

● For questions with a mathematical answer, you may leave you answer as an unsimplified formula
(e.g. 7 · 103).

We will only grade what is in the provided answer box.

a. Give the worst-case runtime for inserting a value into a binary search tree containing N
elements.

O(𝑁)
b. Give a simplified, tight big-O bound for: T(N) = T(N/2) + 16, given T(1) = 1

O(𝑙𝑜𝑔
2
𝑁)

c. Give a simplified, tight big-O bound for: 𝑓(𝑁) = 𝑙𝑜𝑔2(𝑁) + 20𝑙𝑜𝑔(𝑁2)

O(𝑙𝑜𝑔2𝑁)
d. Give the worst-case runtime for inserting a value into an AVL tree containing N elements,
where the value being inserted is smaller than the current smallest value in the tree.

O(𝑙𝑜𝑔
2
𝑁)

e. Give a simplified, tight big-O bound for: 𝑓(𝑁) = 𝑁𝑙𝑜𝑔 𝑙𝑜𝑔(8𝑁) + 𝑁(𝑙𝑜𝑔(𝑁))(𝑙𝑜𝑔(𝑁))

O(𝑁𝑙𝑜𝑔2𝑁)

3

Q1: (continued)
(Same instructions as on previous page)

f. Give the worst-case runtime for removing the next element from a CircularArrayFIFOQueue
(from P1) containing N elements.

=

O(1)
g.Give the worst-case runtime for deleteMin() from a binary min heap containing elements.2𝑁

O(𝑁)
h. Suppose a 5-ary heap is stored in an array with the root in cell 0. Give the formula for
computing the index of the cell containing the third (aka middle) child of the node in cell x. Give
your answer in terms of x.

5x + 3

i. Given M = 5 and L = 13, what is the minimum number of leaf nodes in a B-tree with h = 7?

2*36= 1458

j. Give the smallest value for c that could be used with in a proof to show that:𝑛
0

= 1

is O()3𝑛2 + 5 𝑛2

Given 𝑛
0

= 1

c = 8

4

Q2: Code Analysis (16 pts)
Describe the worst-case running time for the following pseudocode functions in Big-O notation in terms of the
variable n. Your answer MUST be tight and simplified. You do not have to show work or justify your
answers for this problem.

a) void summer(int n) {
for (int i = 0; i*i < n; i++) {

for (int j = n; j >= 1; j = j/3) {
System.out.println("Enjoy the sunshine!");

}
}

}

O(𝑛 𝑙𝑜𝑔
3
𝑛)

b) void happy(int n) {
if (n % 3 == 0) {

for (int i = 456; i >= 0; i -= 5) {
for (int j = i; j >= 0; j -= 2) {

System.out.println("Yipee!");
}

}
} else {

int p = 0;
for (int i = 1; i < n; i *= 2) {

p += 1;
}
for (int j = 1; j < p; j *= 2) {

System.out.println("Smile!");
}

}
}

O(𝑙𝑜𝑔
2
𝑛)

5

Q2: (continued)

c) AVLTree sunny(int n, BinaryMinHeap input) {
// The size of input is n
AVLTree output = new AVLTree();
for (int i = 0; i < n; i++) {

int val = input.deleteMin();
output.insert(val);

}
return output;

}

O(𝑛 𝑙𝑜𝑔 𝑛)

d) void funny(int n) {
for (int i = 0; i < n; i++) {

for (int j = i; j >= 0; j--) {
int z = 3 * n;
for (int k = 0; k < z; k += 3) {

System.out.println("Ha ha ha!");
}

}
}

}

O(𝑛3)

6

Q3:O, Ω, and Θ (9 pts)
For each of the following statements, indicate whether it is always true, sometimes true, or never true. You do
not need to include an explanation. Assume that the domain and codomain of all functions in this problem are
natural numbers(1, 2, 3 ...).

a) If is the worst case runtime for insert in a Binary Search Tree and is the worst𝑓
𝑎

𝑛() 𝑔
𝑎

𝑛()

case runtime for insert in an AVL tree, then (Big-Omega)𝑓
𝑎

𝑛() 𝑖𝑠 Ω 𝑔
𝑎

𝑛()()

Always Never Sometimes

b) 𝑓
𝑏

𝑛() 𝑖𝑠 𝑂 log (𝑓
𝑏

𝑛())2()()
Always Never Sometimes

c) If is the worst case runtime of merging three binary min heaps, each with elements,𝑓
𝑐

𝑛() 𝑛

and is the worst case runtime of inserting elements into a binary min heap, then𝑔
𝑐

𝑛() 3𝑛

𝑓
𝑐

𝑛() 𝑖𝑠 𝑂 𝑔
𝑐

𝑛()()

Always Never Sometimes

7

Q4: Write a Recurrence (8 pts)

Give a base case and a recurrence for the runtime of the following function. Use variables
appropriately for constants (e.g. c1, c2, etc.) in your recurrence (you do not need to attempt to count
the exact number of operations). YOU DO NOT NEED TO SOLVE this recurrence.

int MI6(int n) {
if (n <= 7) {

for (int i = 0; i < n; i++) {
System.out.println("The name's Bond, James Bond");

}
return n + 1;

} else {
if (n % 1 == 1) {

return MI6(n + 1);
} else {

int x = n;
while (x != 0) {

System.out.println("Double O-" + x);
x -= 1;

}
for (int i = 1; i < n; i *= 3) {

System.out.println("Shaken not stirred");
}
return MI6(n / 2) + MI6(n - 3) + (n * n);

}
}

}

For𝑇 𝑛() = 𝑐
0

𝑛 ≤ 7

For𝑇 𝑛() = 𝑇(𝑛/2) + 𝑇(𝑛 − 3) + 𝑐
1
𝑛 + 𝑐

2
𝑙𝑜𝑔

3
𝑛 + 𝑐

3
𝑛 > 7

Yipee!!!! YOU DONOT NEED TO SOLVE this recurrence…

8

Q5: Solve a Recurrence (10 pts)

Suppose that the running time of an algorithm satisfies the recurrence given below. Find the
closed form for T(N). You may assume that N is a power of 3. Your answer should not be
in Big-Oh notation – show the relevant exact constants and bases of logarithms in your
answer (e.g. do NOT use “c1, c2” in your answer).

Your final answer must NOT have any summation symbols or recursion - you may find the list
of summations and logarithm identities on the last page of the exam to be useful.

You must show your work and put your final answer on the line below to receive any
credit. (e.g. show your general formula to receive partial credit).

𝑇 1() = 5

𝑇(𝑁) = 3𝑇(𝑁
3) + 𝑁 for integers N > 1

General formula: 3𝑘𝑇 𝑛

3𝑘() + 𝑘 · 𝑛

Recursive work: 3𝑘𝑇 𝑛

3𝑘()
Non-recursive work: 𝑘 · 𝑛

Closed Form: 5𝑛 + 𝑛 · 𝑙𝑜𝑔
3
(𝑛)

9

Q6: AVL (7 pts)
a) (3 pts) Draw the AVL tree that results after inserting 7 into this AVL tree. Be sure to draw your final
tree in the box below AND indicate the total number of single and double rotations required for
this insertion.

Final Tree:

Total # of Single Rotations required:

1

Total # of Double Rotations required:

0

After inserting 7, a single rotation
about 3 is all that is required

10

Q6: (continued)

b) (4 pts) Give the minimum and maximum height for an AVL tree containing 13 nodes.

Minimum Height: ___3____ Maximum Height: ___4_____

How many more nodes are needed to increase the minimum height by 1? ___3______

How many more nodes are needed to increase the maximum height by 1? ____7______

Max height: With 13 nodes, we can build an AVL tree with at most height 4. We would need
another 7 nodes to be able to increase the height to 5.

Min Height: With 13 nodes, we could fit them into an AVL tree of height 3 (7 nodes will create a
perfect tree of height 2, we could add the remaining 6 nodes on the next level). We would need
at least 16 nodes total to force us to height 4.

11

Q7: Heaps (7 pts)
.

a. (4 pts) Given a binary max heap represented by this array [10, 9, 8, 7, 6, 5, 4, 2, 1],
show the resulting heap (in array representation) after inserting the following elements in
this order: {11, 33}

Show the final array contents (11 values total, starting from index 0):

0 1 2 3 4 5 6 7 8 9 10

33 11 8 7 10 5 4 2 1 6 9

b. (3 pts) Given the following values: {10, 2, 9, 11, 3, 99, 37, 1}, give an order of insertions
into a binary max heap that results in the smallest number of percolateUp
operations.

Order of insertion (8 values total):

__99_, __37__, ___11__, __10__, __9___, __3___, __2___, __1____

12

Q8: B-Trees (8 pts)

a) (4 pts) Your friend proposes a modification to the B-tree implementation discussed in
lecture: use a "jump search" instead of binary search on internal nodes. You do not need
to know anything about the implementation of "jump search", except that the worst case
run-time is O(). Everything else about the find operation on our B-trees remains as we𝑛
discussed in lecture.

Give a tight big-O running time of the worst case of the find operation described above.
Keep all factors of M, L, and N in your answer.

Worst case runtime of find: O(______ ___________) 𝑀 𝑙𝑜𝑔
𝑀

𝑁 + 𝑙𝑜𝑔
2
𝐿

13

Q8: (continued)

b) (1 pt) In the B-tree shown below, write in the values for the interior nodes:

c) (3 pts) Starting with the tree above, draw the tree resulting after inserting 37 into the
B-tree. Please circle your final tree.

14

This is a blank page! Enjoy!

