
CSE 332 Autumn 2023
Lecture 11: B Trees and Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332


B Trees (aka B+ Trees)

• Two types of nodes:
• Internal Nodes

• Sorted array of 𝑀 − 1 keys

• Has 𝑀 children

• No other data!

• Leaf Nodes
• Sorted array of 𝐿 key-value pairs

• Subtree between values 𝑎 and 𝑏 must contain only keys that are ≥ 𝑎 
and < 𝑏 
• If 𝑎 is missing use −∞

• If 𝑏 is missing use ∞

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

𝑎 𝑏

𝑎 ≤ 𝑘 < 𝑏



Find

• Start at the root node

• Binary search to identify correct subtree

• Repeat until you reach a leaf node

• Binary search the leaf to get the value

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



B Tree Structure Requirements

• Root:
• If the tree has ≤ 𝐿 items then root is a leaf node

• Otherwise it is an internal node

• Internal Nodes:

• Must have at least 
𝑀

2
 children (at least half full)

• Leaf Nodes:

• Must have at least Must have at least 
𝐿

2
 items (at least half full)

• All leaves are at the same depth



Insertion Summary

• Binary search to find which leaf should contain the new item

• If there’s room, add it to the leaf array (maintaining sorted order)

• If there’s not room, split 

• Make a new leaf node, move the larger 
𝐿+1

2
 items to it

• If there’s room in the parent internal node, add new leaf to it (with new key 
bound value)

• If there’s not room in the parent internal node, split that!

• Make a new internal node and have it point to the larger 
𝑀+1

2

• If there’s room in the parent internal node, add this internal node to it

• If there’s not room, repeat this process until there is!



Insertion TLDR

• Find where the item goes by repeated binary search

• If there’s room, just add it

• If there’s not room, split things until there is



Insert Example

Insert 22

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 22

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

22

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 26

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 26

3 5 9

1

2

3

4

20 25 27 55

5

6

7

9

10

13

14

17

20

24

25

26

38

40

50

55

90

13 38

27

30



Insert Example

Insert 8

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 8

3 5 9

1

2

3

4

5

6

9

10

5

6

7

5

6

8

7

8
Split!

7

8

Split!
9

7

8

9

10

3 5

1

2

3

4

5

6



Insert Example

Insert 8

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Insert Example

Insert 8

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Let’s do it together!

• 𝑀 = 3, 𝐿 = 3

• Inserts all of these:











Running Time of Find

• Maximum number of leaves:

•
2𝑛

𝐿

• Θ
𝑛

𝐿

• Maximum height of the tree:

• 2 log𝑀
2𝑛

𝐿

• Θ log𝑀
𝑛

𝐿

• Find:
• One binary search per level of the tree

• Θ(log2 𝑀) per search

• One binary search in the leaf
• Θ log2 𝐿

Overall: Θ log2 𝑀 ⋅ log𝑀
𝑛

𝐿
+ log2 𝐿

Usually simplified to:
Θ log2 𝑀 ⋅ log𝑀 𝑛



Running Time of Insert

• Find:
• Θ log2 𝑀 ⋅ log𝑀 𝑛

• Add item to leaf:
• Θ(𝐿)

• Split a leaf
• Θ(𝐿)

• Split one internal node:
• Θ(𝑀)

Overall: Θ 𝐿 + 𝑀 ⋅ log𝑀 𝑛
Usually simplified to:

Θ log2 𝑀 ⋅ log𝑀 𝑛



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 50

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 24

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 5

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3

1

2

3

4

6

5

6



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3

1

2

3

4



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

2

3

4

3

4



Delete

• Recall: all nodes must be at least half full (except root at startup)

delete 1

17 25 55

13

14

17

20

25

27

30

38

40

50

55

90

13 38

9

7

8

9

10

3 9

2

3

4

7

8

9

10



Delete Summary

• Find the item

• Remove the item from the leaf
• If that causes the leaf to be underfull, adopt from a neighbor

• If that would cause the neighbor to be underfull, merge those two leaves

• Update the parent
• If that causes the parent to be underfull, adopt from a neighbor

• If that causes the neighbor to be underfull, merge

• Update the parent
• …



Delete TLDR

• Find and remove from leaf

• Keep doing this until everything is “full enough”:
• If the node is now too small, adopt from a neighbor

• If the neighbor is too small then merge



Aside: Implementation

• What an internal node class might look like:
• int M

• int[] keys

• Node[] children

• int num_children

• What a leaf node class might look like:
• int L

• E[] data

• int num_items



Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1



Two Different ideas of “Average”

• Expected Time
• The expected number of operations a randomly-chosen input uses
• Assumed randomness from somewhere

• Most simply: from the input
• Preferably: from the algorithm/data structure itself

• 𝑓 𝑛 = sum of the running times for each input of size 𝑛 divided by the 
number of inputs of size 𝑛

• Amortized Time
• The long-term average per-execution cost (in the worst case)
• Rather than look at the worst case of one execution, look at the total worst 

case of a sequential chain of many executions
• Why? The worst case may be guaranteed to be rare

• 𝑓 𝑛 = the sum of the running times from a sequence of 𝑛 sequential calls to 
the function divided by 𝑛



Amortized Example

• ArrayList Insert:
• Worst case: Θ(𝑛)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8



Amortized Example

• ArrayList Insert:
• First 8 inserts: 1 operation each

• 9th insert: 9 operations

• Next 7 inserts: 1 operation each

• 17th insert: 17 operations

• Next 15 inserts: 1 operation each

• …

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Do 𝑥 operations with cost 1
Do 1 operation with cost 𝑥
Do 𝑥 operations with cost 1
Do 1 operation with cost 2𝑥
Do 2𝑥 operations with cost 1
Do 1 operation with cost 4𝑥
Do 4𝑥 operations with cost 1
Do 1 operation with cost 8𝑥
…
Amortized: each operation cost 2 operations

Θ(1)



Hash Tables

• Motivation:
• Why not just have a gigantic array?



Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index 
between 0 
and size-1

Insert / find /
delete & value



Example

• Key: Phone Number

• Value: People

• Table size: 10

• ℎ 𝑝ℎ𝑜𝑛𝑒 = number as an integer % 10

• ℎ 8675309 = 9

0 1 2 3 4 5 6 7 8 9



What Influences Running time?


	Slide 1: CSE 332 Autumn 2023 Lecture 11: B Trees and Hashing
	Slide 2: B Trees (aka B+ Trees)
	Slide 3: Find
	Slide 4: B Tree Structure Requirements
	Slide 5: Insertion Summary
	Slide 6: Insertion TLDR
	Slide 7: Insert Example
	Slide 8: Insert Example
	Slide 9: Insert Example
	Slide 10: Insert Example
	Slide 11: Insert Example
	Slide 12: Insert Example
	Slide 13: Insert Example
	Slide 14: Insert Example
	Slide 15: Let’s do it together!
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Running Time of Find
	Slide 21: Running Time of Insert
	Slide 22: Delete
	Slide 23: Delete
	Slide 24: Delete
	Slide 25: Delete
	Slide 26: Delete
	Slide 27: Delete
	Slide 28: Delete
	Slide 29: Delete
	Slide 30: Delete Summary
	Slide 31: Delete TLDR
	Slide 32: Aside: Implementation
	Slide 33: Next topic: Hash Tables
	Slide 34: Two Different ideas of “Average”
	Slide 35: Amortized Example
	Slide 36: Amortized Example
	Slide 37: Hash Tables
	Slide 38: Hash Tables
	Slide 39: Example
	Slide 40: What Influences Running time?

