CSE 332 Autumn 2023
Lecture 11: B Trees and Hashing

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

13 38 I
B Trees (aka B+ Trees

3 5 9 20 25 I 55 I I
* Two types of nodes:
3 13 20 25

* Internal Nodes 1 51|19 38| | 55
e Sorted array of M — 1 keys
* Has M children
* No other data!

* Leaf Nodes

e Sorted array of L key-value pairs

2 4 6 10 14 | | 24 | | 27 40| | 90

7 17 30 50

e Subtree between values a and b must contain only keys that are = a
and < b
* If a is missing use —oo
* If b is missing use

Haan

Find

e Start at the root node
* Binary search to identify correct subtree
* Repeat until you reach a leaf node

. 13 38

* Binary search the leaf to get the value I
F,Fs 9, !20!25!) ,55* i1)
1 3 5 9 13| | 20 25 38 55
2 4 6 10 14| | 24 27 40 90

B Tree Structure Requirements

* Root:
e |f the tree has < L items then root is a leaf node
e Otherwise it is an internal node

* Internal Nodes:
* Must have at least [%} children (at least half full)

e Leaf Nodes:

L.
* Must have at least Must have at least H items (at least half full)

* All leaves are at the same depth

Insertion Summary

* Binary search to find which leaf should contain the new item
* If there’s room, add it to the leaf array (maintaining sorted order)
* If there’s not room, split

L+1] . :
* Make a new leaf node, move the larger {%‘ items to it
* If there’s room in the parent internal node, add new leaf to it (with new key
bound value)
* If there’s not room in the parent internal node, split that!

: o M+1
* Make a new internal node and have it point to the larger {T+‘

 If there’s room in the parent internal node, add this internal node to it
 If there’s not room, repeat this process until there is!

Insertion TLDR

* Find where the item goes by repeated binary search
* If there’s room, just add it
* If there’s not room, split things until there is

Insert Example

Insert 22

!3’5 9, !20!25, | ,55* i1)
1 3 13 20 25 38 55
2 4 14 24 27 40 90

5 9

7 17 30 50

Insert Example

Insert 22

!3’5 9, !20!25, | ,55* i1)
1 3 13 20 25 38 55
2 4 14 22 27 40 90

5 9

7 17| (24| |30 50

Insert Example

Insert 26

!3’5 9, !20!25, | ,55* i1)
1 3 13 20 25 38 55
2 4 14 24 27 40 90

5 9

7 17 30 50

Insert Example

Insert 26

]

R

!

!

SRR
55

|F | IF 5
1 3
2 4

!20’25’27
13 (20| | 25
14 (24| | 26

9 27 38
10 30 40| | 90
17 50

Insert Example

Insert 8

!3’5 9, !20!25, | ,55* i1)
1 3 13 20 25 38 55
2 4 14 24 27 40 90

5 9

7 17 30 50

Insert Example

Insert 8

5
it!
Spllt> -

(oo I N I @) I B O

s w -

o | v

Insert Example

13 | 38
Insert 8 /‘ ‘\‘I\

Insert Example

Insert 8

7 i;}l 38
!20,25! I ,55 I I
131 (20| | 25 38
14| | 24| | 27 40

55
90

17 30 50

Let’s do it together!

M =3,L=3
* Inserts all of these:

Running Time of Find

e Maximum number of leaves:

2n
L
* 0 (%) Overall: © (logz M - logy, % + log, L)
* Maximum height of the tree: Usually simplified to:
. ZlogMzT" O(log, M - logy n)
0 (logM %)
* Find:

* One binary search per level of the tree
* O(log, M) per search

* One binary search in the leaf
* O(log, L)

Running Time of Insert

* Find:

* O(log, M - log,, n)
 Add item to leaf:

* O(L)
* Split a leaf

* O(L)

* Split one internal node:
* O(M)

Overall: (L + M - logy n)
Usually simplified to:
O(log, M - log,, n)

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
FED

10 14 | | 24 | | 27 40| | 90

17 30)4

delete 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
FED

10 14 | | 24 | | 27 40| | 90

delete 24

17 30 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 24

o5

30 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 5

o5

30 50

Delete

» Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 5

o5

6 30 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

7
! RO

10 14 | | 20| | 27 40| | 90

delete 1

o5

30 50

Delete

» Recall: all nodes must be at least half full (except root at startup)

delete 1
13)
!9! ! ! ! 55 I I
2 3 7 9
3 4 8 10 14 20 27 40 90

4 30 50

Delete

e Recall: all nodes must be at least half full (except root at startup)

13 B 38 I

3 9 ! 17 F 25 , I , 55 ! I I
13| (17| | 25 38| [55

3 8 10 14| (20| | 27 40| | 90

delete 1

4 30 50

Delete Summary

 Find the item

* Remove the item from the leaf
* |f that causes the leaf to be underfull, adopt from a neighbor
* |f that would cause the neighbor to be underfull, merge those two leaves

* Update the parent
 If that causes the parent to be underfull, adopt from a neighbor
 If that causes the neighbor to be underfull, merge
e Update the parent

Delete TLDR

* Find and remove from leaf

* Keep doing this until everything is “full enough”:
* |f the node is now too small, adopt from a neighbor
* |f the neighbor is too small then merge

Aside: Implementation

* What an internal node class might look like:
* intM
* int[] keys
* Node[] children
* int num_children

* What a leaf node class might look like:
* intlL
e E[] data
* int num_items

Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)
AVL Tree O(logn) O(logn) O(logn)
Hash Table (Worst case) O(n) O(n) O(n)

Hash Table (Average) 0(1) 0(1) 0(1)

Two Different ideas of “Average”

* Expected Time
* The expected number of operations a randomly-chosen input uses

* Assumed randomness from somewhere
e Most simply: from the input
* Preferably: from the algorithm/data structure itself

* f(n) = sum of the running times for each input of size n divided by the
number of inputs of size n

e Amortized Time
* The long-term average per-execution cost (in the worst case)

* Rather than look at the worst case of one execution, look at the total worst
case of a sequential chain of many executions
 Why? The worst case may be guaranteed to be rare

* f(n) = the sum of the running times from a sequence of n sequential calls to
the function divided by n

Amortized Example

* ArrayList Insert:
* Worst case: O(n)

Amortized Example

* ArrayList Insert:

First 8 inserts: 1 operation each
9t insert: 9 operations

Next 7 inserts: 1 operation each
17t insert: 17 operations

Next 15 inserts: 1 operation each

Do x operations with cost 1
Do 1 operation with cost x
Do x operations with cost 1
Do 1 operation with cost 2x
Do 2x operations with cost 1
Do 1 operation with cost 4x
Do 4x operations with cost 1
Do 1 operation with cost 8x

Amortized: each operation cost 2 operations
0(1)

Hash Tables

* Motivation:
* Why not just have a gigantic array?

Hash Tables

* |dea:
* Have a small array to store information

* Use a hash function to convert the key into an index
* Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices
» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
 Collision resolution

Index Insert / find /
h(k) between 0 delete & value
and size-1

Key Object

Example

* Key: Phone Number

* Value: People

* Table size: 10

* h(phone) = number as an integer % 10
* h(8675309) =9

What Influences Running time?

	Slide 1: CSE 332 Autumn 2023 Lecture 11: B Trees and Hashing
	Slide 2: B Trees (aka B+ Trees)
	Slide 3: Find
	Slide 4: B Tree Structure Requirements
	Slide 5: Insertion Summary
	Slide 6: Insertion TLDR
	Slide 7: Insert Example
	Slide 8: Insert Example
	Slide 9: Insert Example
	Slide 10: Insert Example
	Slide 11: Insert Example
	Slide 12: Insert Example
	Slide 13: Insert Example
	Slide 14: Insert Example
	Slide 15: Let’s do it together!
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Running Time of Find
	Slide 21: Running Time of Insert
	Slide 22: Delete
	Slide 23: Delete
	Slide 24: Delete
	Slide 25: Delete
	Slide 26: Delete
	Slide 27: Delete
	Slide 28: Delete
	Slide 29: Delete
	Slide 30: Delete Summary
	Slide 31: Delete TLDR
	Slide 32: Aside: Implementation
	Slide 33: Next topic: Hash Tables
	Slide 34: Two Different ideas of “Average”
	Slide 35: Amortized Example
	Slide 36: Amortized Example
	Slide 37: Hash Tables
	Slide 38: Hash Tables
	Slide 39: Example
	Slide 40: What Influences Running time?

