CSE 332 Autumn 2023 Lecture 11: B Trees and Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

B Trees (aka B+ Trees)

- Two types of nodes:
 - Internal Nodes
 - Sorted array of M 1 keys
 - Has *M* children
 - No other data!
 - Leaf Nodes
 - Sorted array of *L* key-value pairs
- Subtree between values a and b must contain only keys that are $\geq a$ and < b

-1

- If a is missing use $-\infty$
- If b is missing use ∞

Find

- Start at the root node
- Binary search to identify correct subtree
- Repeat until you reach a leaf node
- Binary search the leaf to get the value

B Tree Structure Requirements

- Root:
 - If the tree has $\leq L$ items then root is a leaf node
 - Otherwise it is an internal node
- Internal Nodes:
 - Must have at least $\left[\frac{M}{2}\right]$ children (at least half full)
- Leaf Nodes:
 - Must have at least Must have at least $\left[\frac{L}{2}\right]$ items (at least half full)
 - All leaves are at the same depth

Insertion Summary

- Binary search to find which leaf should contain the new item
- If there's room, add it to the leaf array (maintaining sorted order)
- If there's not room, **split**
 - Make a new leaf node, move the larger $\left|\frac{L+1}{2}\right|$ items to it
 - If there's room in the parent internal node, add new leaf to it (with new key bound value)
 - If there's not room in the parent internal node, **split** that!
 - Make a new internal node and have it point to the larger $\left|\frac{M+1}{2}\right|$
 - If there's room in the parent internal node, add this internal node to it
 - If there's not room, repeat this process until there is!

Insertion TLDR

- Find where the item goes by repeated binary search
- If there's room, just add it
- If there's not room, split things until there is

		3		5			
-							
	1		3		5		
	2		4		6		

Let's do it together!

• M = 3, L = 3

Running Time of Find

- Maximum number of leaves:
 - $\frac{2n}{L}$ • $\Theta\left(\frac{n}{L}\right)$
- Maximum height of the tree:
 - $2 \log_M \frac{2n}{L}$ • $\Theta\left(\log_M \frac{n}{L}\right)$
- Find:
 - One binary search per level of the tree
 - $\Theta(\log_2 M)$ per search
 - One binary search in the leaf
 - $\Theta(\log_2 L)$

Overall: $\Theta\left(\log_2 M \cdot \log_M \frac{n}{L} + \log_2 L\right)$ Usually simplified to: $\Theta(\log_2 M \cdot \log_M n)$

Running Time of Insert

Delete Summary

- Find the item
- Remove the item from the leaf
 - If that causes the leaf to be underfull, adopt from a neighbor
 - If that would cause the neighbor to be underfull, merge those two leaves
 - Update the parent
 - If that causes the parent to be underfull, adopt from a neighbor
 - If that causes the neighbor to be underfull, merge
 - Update the parent

• ...

Delete TLDR

- Find and remove from leaf
- Keep doing this until everything is "full enough":
 - If the node is now too small, adopt from a neighbor
 - If the neighbor is too small then merge

Aside: Implementation

- What an internal node class might look like:
 - int M
 - int[] keys
 - Node[] children
 - int num_children
- What a leaf node class might look like:
 - int L
 - E[] data
 - int num_items

Next topic: Hash Tables

Data Structure	Time to insert	Time to find	Time to delete		
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$		
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$		
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$		
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$		
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$		
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$		
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$		
Hash Table (Average)	Θ(1)	Θ(1)	Θ(1)		

Two Different ideas of "Average"

- Expected Time
 - The expected number of operations a randomly-chosen input uses
 - Assumed randomness from somewhere
 - Most simply: from the input
 - Preferably: from the algorithm/data structure itself
 - f(n) = sum of the running times for each input of size n divided by the number of inputs of size n
- Amortized Time
 - The long-term average per-execution cost (in the worst case)
 - Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
 - Why? The worst case may be guaranteed to be rare
 - f(n) = the sum of the running times from a sequence of n sequential calls to the function divided by n

Amortized Example

- ArrayList Insert:
 - Worst case: $\Theta(n)$

0	1	2	3	4	5	6	7	8				

Amortized Example

• ArrayList Insert:

• ...

- First 8 inserts: 1 operation each
- 9th insert: 9 operations
- Next 7 inserts: 1 operation each
- 17th insert: 17 operations
- Next 15 inserts: 1 operation each

Do x operations with cost 1 Do 1 operation with cost x Do x operations with cost 1 Do 1 operation with cost 2x Do 2x operations with cost 1 Do 1 operation with cost 4x Do 4x operations with cost 1 Do 1 operation with cost 8x

• • •

Amortized: each operation cost 2 operations $\Theta(1)$

0 1 2 3 4 5 6 7 8

0	1	2	3	4	5	6	7	8							
---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--

Hash Tables

- Motivation:
 - Why not just have a gigantic array?

Hash Tables

- Idea:
 - Have a small array to store information
 - Use a hash function to convert the key into an index
 - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
 - Store key at the index given by the hash function
 - Do something if two keys map to the same place (should be very rare)
 - Collision resolution

Example

- Key: Phone Number
- Value: People
- Table size: 10
- h(phone) = number as an integer % 10
- h(8675309) = 9

What Influences Running time?