CSE 332 Autumn 2023 Lecture 11: B Trees and Hashing

Nathan Brunelle
http://www.cs.uw.edu/332

B Trees (aka B+ Trees)

- Two types of nodes:
- Internal Nodes
- Sorted array of $M-1$ keys
- Has M children
- No other data!

- Leaf Nodes
- Sorted array of L key-value pairs

- Subtree between values a and b must contain only keys that are $\geq a$ and $<b$
- If a is missing use $-\infty$
- If b is missing use ∞

Find

- Start at the root node
- Binary search to identify correct subtree
- Repeat until you reach a leaf node
- Binary search the leaf to get the value

B Tree Structure Requirements

- Root:
- If the tree has $\leq L$ items then root is a leaf node
- Otherwise it is an internal node
- Internal Nodes:
- Must have at least $\left\lceil\frac{M}{2}\right\rceil$ children (at least half full)
- Leaf Nodes:
- Must have at least Must have at least $\left\lceil\frac{L}{2}\right\rceil$ items (at least half full)
- All leaves are at the same depth

Insertion Summary

- Binary search to find which leaf should contain the new item
- If there's room, add it to the leaf array (maintaining sorted order)
- If there's not room, split
- Make a new leaf node, move the larger $\left\lfloor\frac{L+1}{2}\right\rfloor$ items to it
- If there's room in the parent internal node, add new leaf to it (with new key bound value)
- If there's not room in the parent internal node, split that!
- Make a new internal node and have it point to the larger $\left\lfloor\frac{M+1}{2}\right\rfloor$
- If there's room in the parent internal node, add this internal node to it
- If there's not room, repeat this process until there is!

Insertion TLDR

- Find where the item goes by repeated binary search
- If there's room, just add it
- If there's not room, split things until there is

Insert Example

Insert 22

Insert Example

Insert 22

Insert Example

Insert 26

Insert Example

Insert 26

Insert Example

Insert 8

Insert Example
Insert 8

Insert Example

Insert 8

Insert Example

Insert 8

Let's do it together!

- $M=3, L=3$
- Inserts all of these:
- $5,42,74,97,55,1,12,32,34,18$

Running Time of Find

- Maximum number of leaves:
- $\frac{2 n}{L}$

- $\Theta\left(\frac{n}{L}\right)$
- Maximum height of the tree:
$\stackrel{\sim}{2} \log _{M} \frac{2 n}{L}$
- $\Theta\left(\log _{M} \frac{n}{L}\right)$

Overall: $\Theta\left(\log _{2} M \cdot \log _{M} \frac{n}{L}+\log _{2} L\right)$
Usually simplified to:

$$
\Theta\left(\log _{2} M \cdot \log _{M} n\right)
$$

- Find:
- One binary search per level of the tree
- $\Theta\left(\log _{2} M\right)$ per search
- One binary search in the leaf
- $\Theta\left(\log _{2} L\right)$

Running Time of Insert

- Find:
- $\Theta\left(\log _{2} M \cdot \log _{M} n\right)$

Overall: $\Theta\left(L+M \cdot \log _{M} n\right)$ Usually simplified to:

$$
\Theta\left(\mathrm{K}_{\mathrm{K}}^{\mathrm{Z}} M \cdot \log _{M} n\right)
$$

- Split a leaf
- $\Theta(L)$
- Split one internal node:
- $\Theta(M)$
- Add item to leaf:
- $\Theta(L)$

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete Summary

- Find the item
- Remove the item from the leaf
- If that causes the leaf to be underfull, adopt from a neighbor
- If that would cause the neighbor to be underfull, merge those two leaves
- Update the parent
- If that causes the parent to be underfull, adopt from a neighbor
- If that causes the neighbor to be underfull, merge
- Update the parent

[^0]
Delete TLDR

- Find and remove from leaf
- Keep doing this until everything is "full enough":
- If the node is now too small, adopt from a neighbor
- If the neighbor is too small then merge

Aside: Implementation

- What an internal node class might look like:
- int M
- int[] keys
- Node[] children
- int num_children
- What a leaf node class might look like:
- int L
- E[] data
- int num_items

Next topic: Hash Tables

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Hash Table (Average)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Two Different ideas of "Average"

- Expected Time
- The expected number of operations a randomly-chosen input uses
- Assumed randomness from somewhere
- Most simply: from the input
- Preferably: from the algorithm/data structure itself
- $f(n)=$ sum of the running times for each input of size n divided by the number of inputs of size n
- Amortized Time
- The long-term average per-execution cost (in the worst case)
- Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
- Why? The worst case may be guaranteed to be rare
- $f(n)=$ the sum of the running times from a sequence of n sequential calls to the function divided by n

Amortized Example

- ArrayList Insert:
- Worst case: $\Theta(n)$

0	1	2	3	4	5	6	7	8

0	1	2	3	4	5	6	7	8							

Amortized Example

- ArrayList Insert:

- First 8 inserts: 1 operation each
- $9^{\text {th }}$ insert: 9 operations
- Next 7 inserts: 1 operation each
- $17^{\text {th }}$ insert: 17 operations
- Next 15 inserts: 1 operation each

Do x operations with cost 1
Do 1 operation with cost x
Do x operations with cost 1
Do 1 operation with cost $2 x$
Do $2 x$ operations with cost 1
Do 1 operation with cost $4 x$
Do $4 x$ operations with cost 1
Do 1 operation with cost $8 x$
...
Amortized: each operation cost 2 operations
$\Theta(1)$

- ...

0	1	2	3	4	5	6	7

0	1	2	3	4	5	6	7	8							

Hash Tables

- Motivation:
- Why not just have a gigantic array?

Hash Tables

- Idea:

- Have a small array to store information
- Use a hash function to convert the key into an index
- Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
- Store key at the index given by the hash function
- Do something if two keys map to the same place (should be very rare)
- Collision resolution

Key Object

Example

- Key: Phone Number
- Value: People
- Table size: 10
- $h($ phone $)=$ number as an integer $\% 10$
- $h(8675309)=9$

What Influences Running time?

[^0]: - ...

