CSE 332 Autumn 2023 Lecture 12: Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

Next topic: Hash Tables

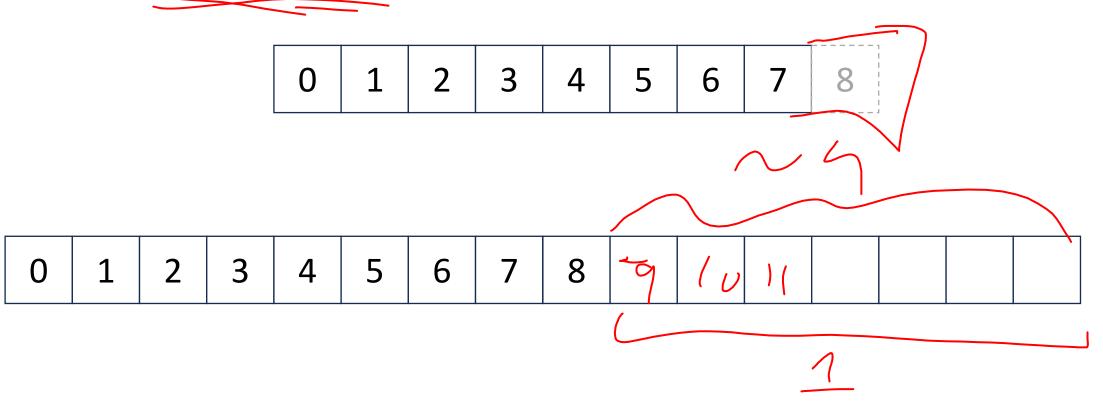
	Ĺ	C		
Data Structure	Time to insert	Time to find	Time to delete	
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	1
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	Ľ
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$	
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$	
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	-
Hash Table (Average)	Θ(1)	Θ(1)	Θ(1)	

Two Different ideas of "Average"

- Expected Time
 - The expected number of operations a randomly-chosen input uses
 - Assumed randomness from somewhere
 - Most simply: from the input
 - Preferably: from the algorithm/data structure itself
 - $f(n) = \text{sum of the running times for each input of size <math>n$ divided by the number of inputs of size n
- Amortized Time <
 - The long-term average per-execution cost (in the worst case)
 - Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
 - Why? The worst case may be guaranteed to be rare
 - f(n) = the sum of the running times from a sequence of n sequential calls to the function divided by n

Amortized Example

- ArrayList Insert:
 - Worst case: $\Theta(n)$

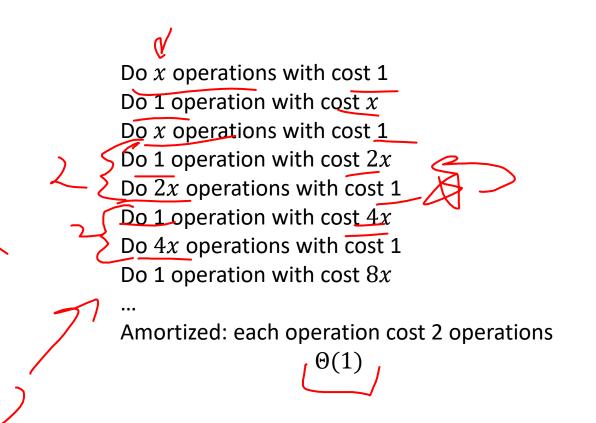


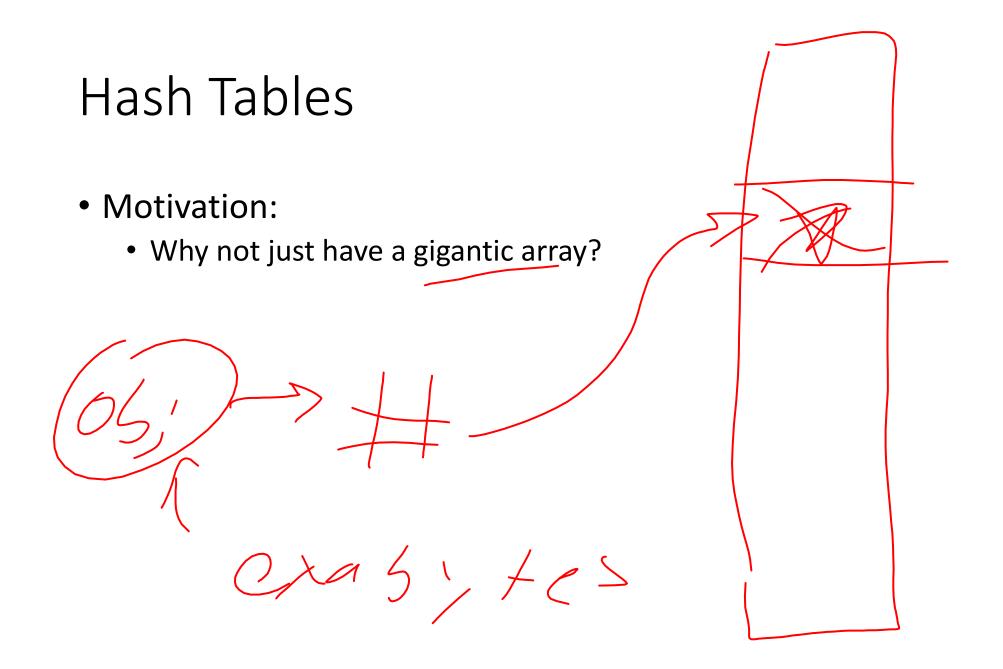
Amortized Example

• ArrayList Insert:

•

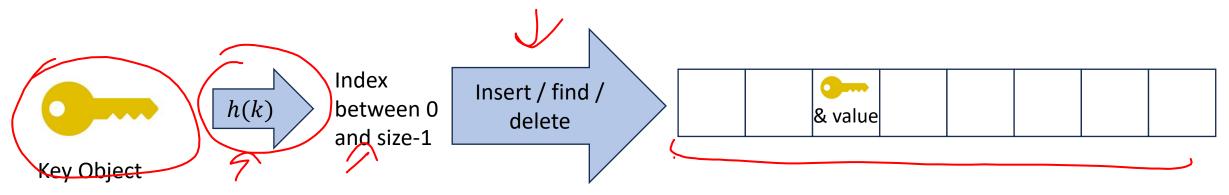
- First 8 inserts: 1 operation each
- 9th insert: 9 operations
- Next 7 inserts: 1 operation each
- 17th insert: 17 operations
- Next 15 inserts: 1 operation each

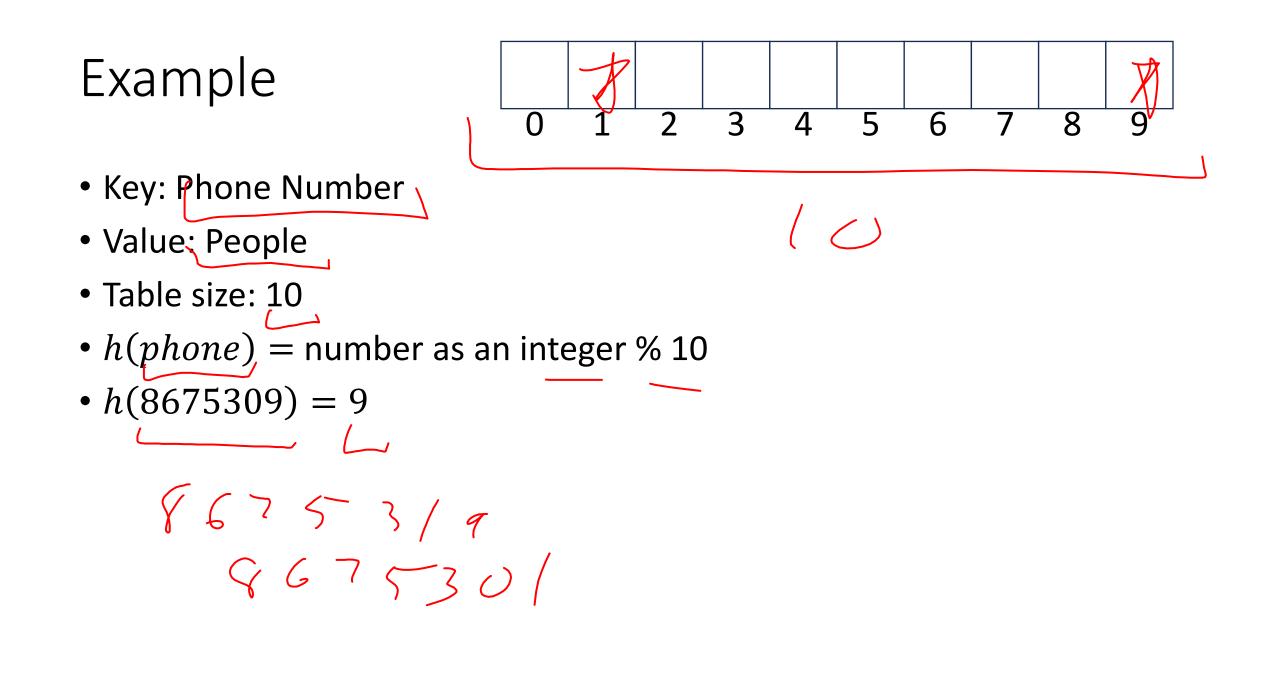




Hash Tables

- Idea:
 - Have a small array to store information
 - Use a **hash function** to convert the key into an index
 - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
 - Store key at the index given by the hash function
 - Do something if two keys map to the same place (should be very rare)
 - Collision resolution





What Influences Running time?

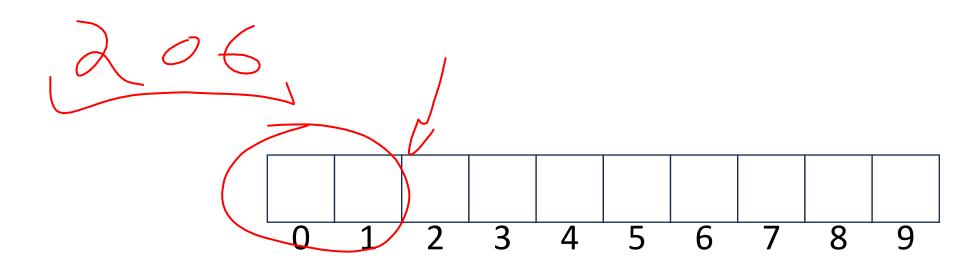
- How "spread out" our input keys are
 - How much do keys repeat
- Hash the function itself will take time
- Size of the table relative to the number things inserted
- How well our hash function scatters the keys
- What do we do when two things hash to the same spot

Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
 - Calculating the hash should be negligible
- Should randomly scatter objects
 - Objects that are similar to each other should be likely to end up far away
- Should use the entire table
 - There should not be any indices in the table that nothing can hash to
 - Picking a table size that is prime helps with this
- Should use things needed to "identify" the object
 - Use only fields you would check for a .equals method be included in calculating the hash
 - More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

- h(phone) =the first digit of the phone number
 - No US phone numbers start with 1 or 0
 - If we're sampling from this class, 2 is by far the most likely



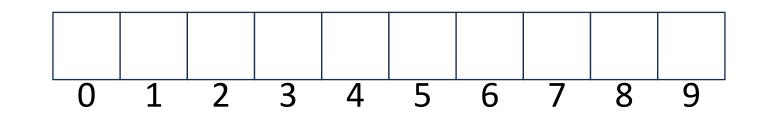
Compare These Hash Functions (for strings)

-2 5-B-

- Let s = s₀s₁s₂ ... s_{m-1} be a string of length m
 Let a(s_i) be the ascii encoding of the character s_i
- $h_1(s) = a(s_0)^{6} / (s_0)^{-2} / (s_0)$
- $h_2(s) = \left(\sum_{i=0}^{m-1} a(s_i)\right)$
- $h_3(s) = \left(\sum_{i=0}^{m-1} a(s_i) \cdot 37^i\right)$

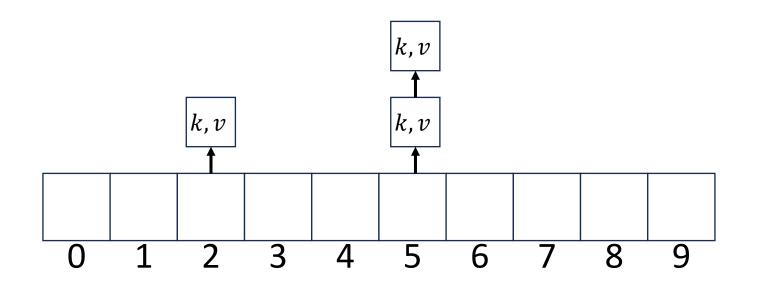
Collision Resolution

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
 - Separate Chaining
 - Use a secondary data structure to contain the items
 - E.g. each index in the hash table is itself a linked list
 - Open Addressing
 - Use a different spot in the table instead
 - Linear Probing
 - Quadratic Probing
 - Double Hashing



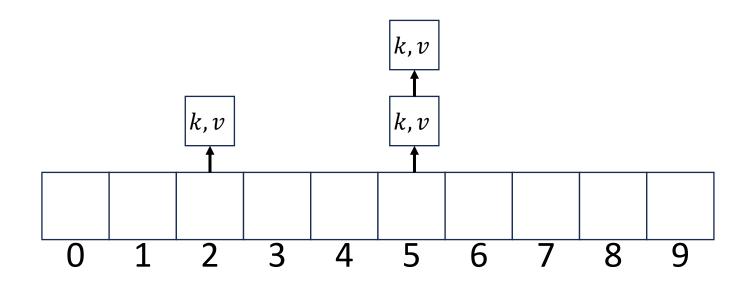
Separate Chaining Insert

- To insert *k*, *v*:
 - Compute the index using i = h(k) % size
 - Add the key-value pair to the data structure at *table*[*i*]



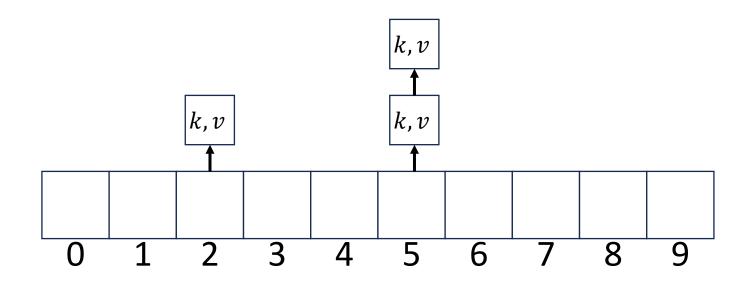
Separate Chaining Find

- To find *k*:
 - Compute the index using i = h(k) % size
 - Call find with the key on the data structure at *table*[*i*]



Separate Chaining Delete

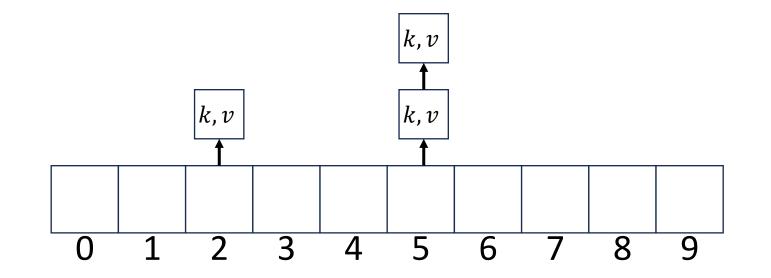
- To delete k:
 - Compute the index using i = h(k) % size
 - Call delete with the key on the data structure at *table*[*i*]

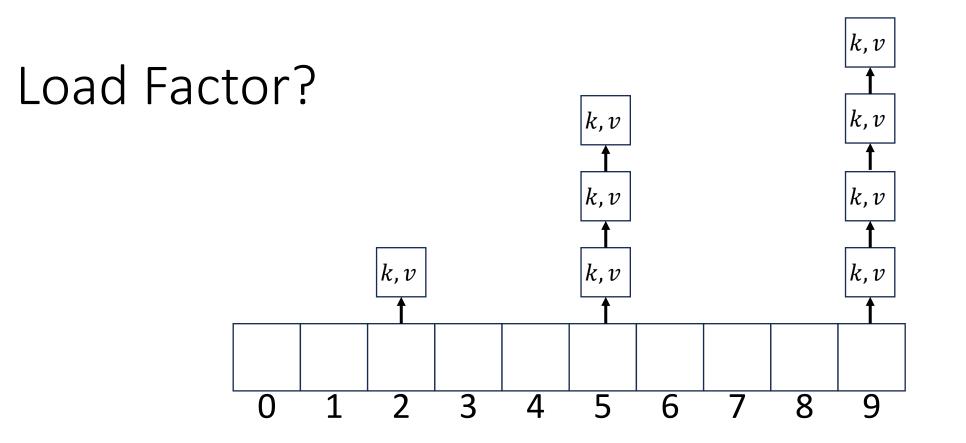


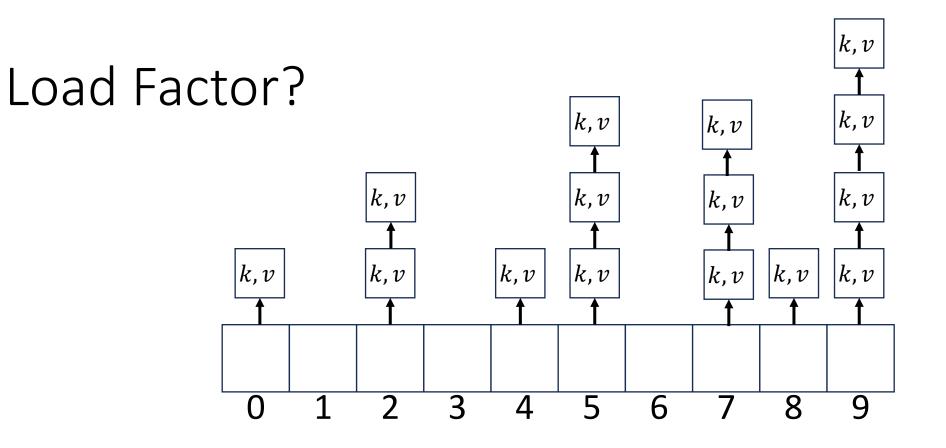
Formal Running Time Analysis

- The **load factor** of a hash table represents the average number of items per "bucket"
 - $\lambda = \frac{n}{size}$
- Assume we have a has table that uses a linked-list for separate chaining
 - What is the expected number of comparisons needed in an unsuccessful find?
 - What is the expected number of comparisons needed in a successful find?
- How can we make the expected running time $\Theta(1)$?

Load Factor?

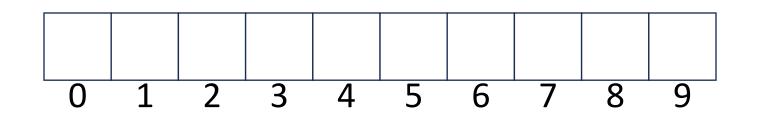






Collision Resolution: Linear Probing

• When there's a collision, use the next open space in the table



Linear Probing: Insert Procedure

• To insert *k*, *v*

• ...

- Calculate i = h(k) % size
- If table[i] is occupied then try (i + 1)% size
- If that is occupied try (i + 2)% size
- If that is occupied try (i + 3)% size

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

• Let's do this together!

Linear Probing: Find

- To find key k
 - Calculate i = h(k) % size
 - If table[i] is occupied and does not contain k then look at (i + 1) % size
 - If that is occupied and does not contain k then look at (i + 2) % size
 - If that is occupied and does not contain k then look at (i + 3) % size
 - Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

• Let's do this together!

Linear Probing: Delete

• Let's do this together!