CSE 332 Autumn 2023 Lecture 18: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

800	$\begin{aligned} & 801 \\ & 401 \\ & 101 \\ & 901 \\ & 121 \end{aligned}$	512	$\begin{aligned} & 103 \\ & 323 \\ & 823 \\ & 113 \end{aligned}$		$\begin{aligned} & 255 \\ & 555 \\ & 245 \end{aligned}$			018	999
0	1	2	3	4	5	6	7	8	9

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

800	801								
401		103							
101	512	323		255					
901		853			018	999			
	121		113		245				
0	1	2	3	4	5	6	7	8	9

Place each element into a "bucket" according to its 10's place

800 801									
401	512	121							
101	113	323		245	255				999
901	018	823							
103									

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

	101								
018	103	245	323	401	512			800	
	113	255							
121							801		
823	999								
	0	1	2	3	4	5	6	7	8

Convert back into an array

018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999

RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
- $\Theta(n+b)$
- Repeat once per each digit
- $\log _{b} m$ iterations
- Overall:
- $\Theta\left(n \log _{b} m+b \log _{b} m\right)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

ARPANET

Undirected Graphs
Vertices/Nodes
Definition: $G=(V, E)$

Directed Graphs
Definition: $G=(V, \underset{\text { Edges }}{E}$

Self-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

Weighted Graphs
Vertices/Nodes
Definition: $G=(V, E)$
$w(e)=$ weight of edge e

Graph Applications

- For each application below, consider:
- What are the nodes, what are the edges?
- Is the graph directed?
- Is the graph simple?
- Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

Some Graph Terms

- Adjacent/Neighbors
- Nodes are adjacent/neighbors if they share an edge
- Degree

- Number of "neighbors" of a vertex
- Indegree
- Number of incoming neighbors
- Outdegree
- Number of outgoing neighbors

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
- Add Edge
- Remove Edge
- Check if Edge Exists
- Get Neighbors (incoming)
- Get Neighbors (outgoing)

Adjacency List

[^0]| 1 | 2 | 3 | | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 5 | |
| 3 | 1 | 2 | 4 | 6 |
| 4 | 3 | 5 | 6 | |
| | | | | |
| | 2 | 4 | 7 | 8 |
| 6 | 3 | 4 | 7 | |
| 7 | 5 | 6 | 8 | 9 |
| 8 | 5 | 7 | 9 | |
| 9 | 7 | 8 | | |
| | | | | |

Adjacency List (Weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n+m)$
Add Edge: Θ (1)
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(n)$

$$
\begin{array}{|l|}
|V|=n \\
|E|=m
\end{array}
$$

Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		

Adjacency Matrix

Time/Space Tradeoffs
Space to represent: $\Theta(?)$
Add Edge: Θ (?)
Remove Edge: $\Theta(?)$
Check if Edge Exists: Θ (?)

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

Adjacency Matrix (weighted)

Time/Space Tradeoffs
Space to represent: $\Theta\left(n^{2}\right)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(1)$

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path

$$
\text { A sequence of nodes }\left(v_{1}, v_{2}, \ldots, v_{k}\right)
$$

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Definition: (Strongly) Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Connected

Not (strongly) Connected

Definition: Weakly Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2} ignoring direction of edges

Weakly Connected

Weakly Connected

Definition: Complete Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is an edge from v_{1} to v_{2}

Complete Undirected Graph

Complete
Directed Graph

Complete Directed Non-simple Graph

Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta\left(|V|^{2}\right)$:
- Undirected and simple: $\frac{|V|(|V|-1)}{2}$
- Directed and simple: $|V|(|V|-1)$
- Direct and non-simple (but no duplicates): $|V|^{2}$
- If the graph is connected, the minimum number of edges is $|V|-1$
- If $|E| \in \Theta\left(|V|^{2}\right)$ we say the graph is dense
- If $|E| \in \Theta(|V|)$ we say the graph is sparse
- Because $|E|$ is not always near to $|V|^{2}$ we do not typically substitute $|V|^{2}$ for $|E|$ in running times, but leave it as a separate variable

Definition: Tree

A Graph $G=(V, E)$ is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

A Tree

A Rooted Tree

Breadth-First Search

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, \ldots
- Output:
- How long is the shortest path?
- Is the graph connected?

BFS

Running time: $\Theta(|V|+|E|)$
void bfs(graph, s)\{ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.dequeue(); for (v: neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; found.enqueue(v); \}
\}
\}

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth!
int shortestPath(graph, s, t)\{

```
found = new Queue();
```

layer = 0;
found.enqueue(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.dequeue(); layer = depth of current; for (v : neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; depth of $v=$ layer +1 ; found.enqueue(v);
\}
\}
\} return depth of t;

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, \ldots
- Output:
- Does the graph have a cycle?
- A topological sort of the graph.

DFS (non-recursive)

Running time: $\Theta(|V|+|E|)$
void dfs(graph, s)\{ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.pop(); for (v: neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; found.push(v);
\}
\}
\}

DFS Recursively (more common)

void dfs(graph, curr)\{
mark curr as "visited"; for (v: neighbors(current))\{ if (! v marked "visited")\{ dfs(graph, v);
\}
\}
mark curr as "done";
\}

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
- Tree Edge
- (a, b) was followed when pushing
- (a, b) when b was unvisited when we were at a

- Back Edge

- (a, b) goes to an "ancestor"
- a and b visited but not done when we saw (a, b)
- $t_{\text {visited }}(b)<t_{\text {visited }}(a)<t_{\text {done }}(a)<t_{\text {done }}(b)$
- Forward Edge
- (a, b) goes to a "descendent"
- b was visited and done between when a was visited and done

- $t_{\text {visited }}(a)<t_{\text {visited }}(b)<t_{\text {done }}(b)<t_{\text {done }}(a)$

- Cross Edge

- (a, b) goes to a node that doesn't connect to a
- b was seen and done before a was ever visited
- $t_{\text {done }}(b)<t_{\text {visited }}(a)$

Cycle Detection

Idea: Look for a back edge!

boolean hasCycle(graph, curr)\{
mark curr as "visited";
cycleFound = false; for (v : neighbors(current))\{
if (v marked "visited" \&\& ! v marked "done")\{ cycleFound=true;
\}
if (! v marked "visited" \&\& !cycleFound)\{ cycleFound = hasCycle(graph, v);
\}
\}
mark curr as "done"; return cycleFound;

Topological Sort

- A Topological Sort of a directed acyclic graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation


```
List topologicalSort(graph){
    doneList = new List();
    for (v : graph.vertices()){
        if (! v marked as "seen"){
                            topSortRec(graph, v, doneList);
    }
    }
    doneList.reverse();
    return doneList;
}
void topSortRec(graph, curr, doneList){
    mark curr as "visited";
    for (v : neighbors(current)){
    if (! v marked "visited"){
        topSortRec(graph, v);
        }
}
mark curr as "done";
doneList.add(curr);```


[^0]:    Time/Space Tradeoffs
    Space to represent: $\Theta(n+m)$
    Add Edge: $\Theta(1)$
    Remove Edge: $\Theta(1)$
    Check if Edge Exists: $\Theta(n)$
    Get Neighbors (incoming): $\Theta(n+m)$
    Get Neighbors (outgoing): $\Theta(\operatorname{deg}(v))$

