CSE 332 Autumn 2023 Lecture 18: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

800	801 401 101 901 121	512	103 323 823 113		255 555 245			018	999
0	1	2	3	4	5	6	7	8	9

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) *b*
- BucketSort all n things using b buckets
 - $\Theta(n+b)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

ARPANET

Self-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs

Graph Applications

- For each application below, consider:
 - What are the nodes, what are the edges?
 - Is the graph directed?
 - Is the graph simple?
 - Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

Some Graph Terms

- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- Degree
 - Number of "neighbors" of a vertex
- Indegree
 - Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(n)$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•

Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(n)$ Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

V	= n
E	= m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•

Time/Space Tradeoffs

Space to represent: $\Theta(?)$ Add Edge: $\Theta(?)$ Remove Edge: $\Theta(?)$ Check if Edge Exists: $\Theta(?)$ Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

V	= n
E	= m

	А	В	С	D	Е	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

Time/Space TradeoffsSpace to represent: $\Theta(n^2)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(1)$ Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

V	= n
	= m

	А	В	С	D	Е	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
							1	1	

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path A sequence of nodes $(v_1, v_2, ..., v_k)$ s.t. $\forall 1 \le i \le k - 1$, $(v_i, v_{i+1}) \in E$ 10 5 3 11 1 6

Simple Path:

A path in which each node appears at most once

Cycle:

A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Not (strongly) Connected

Connected

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges

Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2

Complete Undirected Graph

Complete Directed Graph

Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: |V|(|V| 1)
 - Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V| 1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

A Rooted Tree

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?

Running time: $\Theta(|V| + |E|)$

void bfs(graph, s){ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.enqueue(v);

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth!

int shortestPath(graph, s, t){ found = new Queue(); layer = 0; found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v);

return depth of t;

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.

DFS (non-recursive)

Running time: $\Theta(|V| + |E|)$

void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

DFS Recursively (more common)

```
void dfs(graph, curr){
    mark curr as "visited";
    for (v : neighbors(current)){
        if (! v marked "visited"){
            dfs(graph, v);
            }
        mark curr as "done";
```


Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (*a*, *b*) was followed when pushing
 - (*a*, *b*) when *b* was unvisited when we were at *a*
 - Back Edge
 - (*a*, *b*) goes to an "ancestor"
 - *a* and *b* visited but not done when we saw (*a*, *b*)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (*a*, *b*) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (*a*, *b*) goes to a node that doesn't connect to *a*
 - *b* was seen and done before *a* was ever visited
 - $t_{done}(b) < t_{visited}(a)$

Cycle Detection

Topological Sort

• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

Topological Sort

Idea: List in descending order by "done" time


```
List topologicalSort(graph){
        doneList = new List();
        for (v : graph.vertices()){
                if (! v marked as "seen"){
                         topSortRec(graph, v, doneList);
        doneList.reverse();
        return doneList;
void topSortRec(graph, curr, doneList){
        mark curr as "visited";
        for (v : neighbors(current)){
                if (! v marked "visited"){
                         topSortRec(graph, v);
        mark curr as "done";
        doneList.add(curr);
                                                      37
```