
CSE 332 Autumn 2023
Lecture 19: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Adjacency List

2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge: Θ(1)
Remove Edge (𝑣, 𝑤):Θ deg 𝑣
Check if Edge 𝑣, 𝑤 Exists: Θ deg 𝑣
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix (weighted)

3

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations don’t end up
being that much slower

Definition: Path

5

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path which starts and
ends in the same place

Definition: (Strongly) Connected Graph

6

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Definition: (Strongly) Connected Graph

7

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Connected Not (strongly) Connected

Definition: Weakly Connected Graph

8

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
ignoring direction of edges

1

2

3

4

5

6
7

9

8

Weakly Connected

1

2

3

4

5

6
7

9

8

Not Weakly Connected

Definition: Complete Graph

9

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete
Undirected Graph

Complete
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed
Non-simple Graph

1 2

3 4

Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple:
|𝑉|(|𝑉|−1)

2

• Directed and simple: |𝑉|(|𝑉| − 1)

• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2 we say the graph is dense

• If 𝐸 ∈ Θ |𝑉| we say the graph is sparse

• Because 𝐸 is not always near to 𝑉 2 we do not typically substitute
𝑉 2 for 𝐸 in running times, but leave it as a separate variable

Definition: Tree

11

A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree

1

2

3

4

5

6
7

9

8

A Rooted Tree

1

2

3

4

56

7 9

8

Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors
of neighbors of 𝑠, …

• Output:
• How long is the shortest path?

• Is the graph connected?

12

1

2

3

4

5

6
7

9

8

BFS

13

void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

Shortest Path (unweighted)

14

int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Depth-First Search

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

16

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

17

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

DFS Recursively (more common)

18

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Using DFS
• Consider the “visited times” and “done times”

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 19

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5

1

2

3

4

5

6
7

9

8

Visited : 9
Done: 14

Visited : 10
Done: 13

Visited : 11
Done: 12

Cycle Detection

20

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Single-Source Shortest Path

21

Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

2

6

11

9
5

8

3

7

3

1

8

12

9

Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node
“nearest” to 𝑠, stop when

• Output:
• Distance from start to end

• Distance from start to every node

22

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

23

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

∞

∞

∞

∞

∞ ∞

∞

∞

Node Done?

0 F

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

24

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

∞

∞ ∞

∞

∞

Node Done?

0 T

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

25

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

18

∞ ∞

∞

∞

Node Done?

0 T

1 T

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 18

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

26

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 15

4 18

5 13

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

27

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 T

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 14

4 18

5 13

6 ∞

7 20

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

28

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if done[current]{ continue;}
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if new_dist < distances[neighbor]{
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
• Θ 𝐸 log 𝑉

29

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:

30

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first

𝑘 nodes, then when we remove node 𝑘 + 1 we have
found its shortest path

31

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the
queue. What do we know bout 𝑎?

32

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

33

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

34

𝑠

𝑥

𝑦

𝑎

𝑏

	Slide 1: CSE 332 Autumn 2023 Lecture 19: Graphs
	Slide 2: Adjacency List
	Slide 3: Adjacency Matrix (weighted)
	Slide 4: Aside
	Slide 5: Definition: Path
	Slide 6: Definition: (Strongly) Connected Graph
	Slide 7: Definition: (Strongly) Connected Graph
	Slide 8: Definition: Weakly Connected Graph
	Slide 9: Definition: Complete Graph
	Slide 10: Graph Density, Data Structures, Efficiency
	Slide 11: Definition: Tree
	Slide 12: Breadth-First Search
	Slide 13: BFS
	Slide 14: Shortest Path (unweighted)
	Slide 15: Depth-First Search
	Slide 16: Depth-First Search
	Slide 17: DFS (non-recursive)
	Slide 18: DFS Recursively (more common)
	Slide 19: Using DFS
	Slide 20: Cycle Detection
	Slide 21: Single-Source Shortest Path
	Slide 22: Dijkstra’s Algorithm
	Slide 23: Dijkstra’s Algorithm
	Slide 24: Dijkstra’s Algorithm
	Slide 25: Dijkstra’s Algorithm
	Slide 26: Dijkstra’s Algorithm
	Slide 27: Dijkstra’s Algorithm
	Slide 28: Dijkstra’s Algorithm
	Slide 29: Dijkstra’s Algorithm: Running Time
	Slide 30: Dijkstra’s Algorithm: Correctness
	Slide 31: Dijkstra’s Algorithm: Correctness
	Slide 32: Dijkstra’s Algorithm: Correctness
	Slide 33: Dijkstra’s Algorithm: Correctness
	Slide 34: Dijkstra’s Algorithm: Correctness

