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Adjacency List
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Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge: Θ(1)
Remove Edge (𝑣, 𝑤):Θ deg 𝑣
Check if Edge 𝑣, 𝑤  Exists: Θ deg 𝑣
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency Matrix (weighted)
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Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 
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Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is 
much more space efficient and the slower operations don’t end up 
being that much slower



Definition: Path
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A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘) 
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path which starts and 
ends in the same place



Definition: (Strongly) Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8



Definition: (Strongly) Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
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Definition: Weakly Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2 
ignoring direction of edges
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Definition: Complete Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete 
Undirected Graph

Complete 
Directed Graph
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Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple: 
|𝑉|(|𝑉|−1)

2

• Directed and simple: |𝑉|(|𝑉| − 1)

• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2  we say the graph is dense

• If 𝐸 ∈ Θ |𝑉|  we say the graph is sparse

• Because 𝐸  is not always near to 𝑉 2 we do not typically substitute 
𝑉 2 for 𝐸  in running times, but leave it as a separate variable



Definition: Tree
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A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect, 
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree
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Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors 
of neighbors of 𝑠, …

• Output: 
• How long is the shortest path?

• Is the graph connected?
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BFS
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void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.enqueue(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



Shortest Path (unweighted)
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int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  layer = depth of current;
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    depth of v = layer + 1;
    found.enqueue(v);
   }
  }
 }
 return depth of t; 
}   

Idea: when it’s seen, remember 
its “layer” depth!
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Depth-First Search



Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS (non-recursive)
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void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.pop();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.push(v);
   }
  }
 } 
}   

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸



DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Using DFS
• Consider the “visited times” and “done times” 

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎  19
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Cycle Detection
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boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
  if (v marked “visited” && ! v marked “done”){
   cycleFound=true;
  }
  if (! v marked “visited” && !cycleFound){
   cycleFound = hasCycle(graph, v);
  }
 }
 mark curr as “done”;
 return cycleFound;
}   
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Idea: Look for a back edge!



Single-Source Shortest Path
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Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find 
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)
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Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node 
“nearest” to 𝑠, stop when 

• Output: 
• Distance from start to end

• Distance from start to every node

22

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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Idea: When a node is the closest 
undiscovered thing to the start, 
we have found its shortest path



Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…];  // one index per node
 done = [False,False,False,…];  // one index per node
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if done[current]{ continue;}
  done[current] = true;
  for (neighbor : current.neighbors){
   if (!done[neighbor]){
    new_dist = distances[current]+weight(current,neighbor);
    if new_dist < distances[neighbor]{
     distances[neighbor] = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return distances[end]
}
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Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?

• Overall running time:
• Θ 𝐸 log 𝑉
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have 
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:
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Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the 
priority queue, its distance is that of the 
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first 

𝑘 nodes, then when we remove node 𝑘 + 1 we have 
found its shortest path
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the 
queue. What do we know bout 𝑎?
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue. 
• No other node incomplete node has a shorter path 

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away 

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete 
nodes, and therefore we have found it already!
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