CSE 332 Autumn 2023 Lecture 21: Dijkstra’s
 Nathan Brunelle

http://www.cs.uw.edu/332

Breadth-First Search

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, \ldots
- Output:
- How long is the shortest path?
- Is the graph connected?

BFS

Running time: $\Theta(|V|+|E|)$
void bfs(graph, s)\{ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.dequeue(); for (v : neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; found.enqueue(v); \}
\}
\}
\}

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth!
int shortestPath(graph, s, t)\{

```
found = new Queue();
```

layer = 0;
found.enqueue(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)) \{ if (! v marked "visited")\{ mark v as "visited"; depth of $v=$ layer +1 ; found.enqueue(v);
\}
\}
\} return depth of t;

Single-Source Shortest Path

Find the quickest way to get from UVA to each of these other places

Given a graph $G=(V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

Some "Tricky" Observations

- Shortest path by sum of edge weights does not necessarily use the fewest edges.

- Negative Edges:
- Today's algorithm assumes that a path from A to B cannot be longer than a path from A to B to C.
- Assumption is guaranteed to be true if no edges have negative weights
- If there are negative weight cycles, problem is ill-defined

Dealing with Negative Edges (Incorrectly)

- Why doesn't this work?
- Take the most negative edge and add it's absolute value to every other edge

Dijkstra's Algorithm

- Input: graph with no negative edge weights, start node s, end node t
- Behavior: Start with node s, repeatedly go to the incomplete node "nearest" to s, stop when
- Output:
- Distance from start to end
- Distance from start to every node

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest "unknown" node to the start, we have found its shortest path

Node	Done?	Node	Distance
0	F	0	0
1	F	1	∞
2	F	2	∞
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm
Start: 0
End: 8

Node	Done?	Node	Distance
0	T	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Idea: When a node is the closest "unknown" node to the start, we have found its shortest path

Dijkstra’s Algorithm

 Start: 0End: 8
Idea: When a node is the closest "unknown" node to the start, we have found its shortest path

Node	Done?	Node	Distance
0	T	0	0
1	T	1	10
2	F	2	12
3	F	3	∞
4	F		4
5	F	5	18
6	F	6	∞
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm Start: 0
End: 8
Idea: When a node is the closest "unknown" node to the start, we have found its shortest path

Node	Done?	Node	Distance
0	T	0	0
1	T	1	10
2	T	2	12
3	F		3
4	F		15
5	F		18
6	F	6	13
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm Start: 0
End: 8
Idea: When a node is the closest "unknown" node to the start, we have found its shortest path

Node	Done?	Node	Distance
0	T	0	0
1	T	1	10
2	T	2	12
3	F	3	14
4	F	4	18
5	T	5	13
6	F	6	∞
7	F	7	20
8	F	8	∞

Dijkstra’s Algorithm

int dijkstras(graph, start, end)\{
PQ = new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin();
if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{
new_dist = current.distance + weight(current,neighbor);
if (new_dist < neighbor. distance) \{ neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
- How many times is each node added to the priority queue?
- How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
- $\Theta(|E| \log |V|)$

Dijkstra's Algorithm: Correctness

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

Dijkstra's Algorithm: Correctness

- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
- It is indeed 0 away from itself
- Inductive Step:

- If we have correctly found shortest paths for the first k nodes, then when we remove node $k+1$ we have found its shortest path

Dijkstra's Algorithm: Correctness

- Suppose a is the next node removed from the queue. What do we know bout a ?

Dijkstra’s Algorithm: Correctness

- Suppose a is the next node removed from the queue.
- No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
- Consider any other incomplete node b that is 1 edge away from a complete node
- a is the closest node that is one away from a complete node

- Thus no path that includes b can be a shorter path to a
- Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!

Dijkstra’s Algorithm: Correctness

- Suppose a is the next node removed from the queue.
- No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
- Consider any other incomplete node b that is 1 edge away from a complete node
- a is the closest node that is one away from a complete node

- No path from b to a can have negative weight
- Thus no path that includes b can be a shorter path to a
- Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, \ldots
- Output:
- Does the graph have a cycle?
- A topological sort of the graph.

DFS (non-recursive)

Running time: $\Theta(|V|+|E|)$
void dfs(graph, s)\{ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.pop(); for (v : neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; found.push(v);
\}
\}
\}
\}

DFS Recursively (more common)

void dfs(graph, curr)\{
mark curr as "visited"; for (v: neighbors(current))\{ if (! v marked "visited")\{ dfs(graph, v);
\}
\}
mark curr as "done";
\}

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
- Tree Edge
- (a, b) was followed when pushing
- (a, b) when b was unvisited when we were at a

- Back Edge

- (a, b) goes to an "ancestor"
- a and b visited but not done when we saw (a, b)
- $t_{\text {visited }}(b)<t_{\text {visited }}(a)<t_{\text {done }}(a)<t_{\text {done }}(b)$
- Forward Edge
- (a, b) goes to a "descendent"
- b was visited and done between when a was visited and done

- $t_{\text {visited }}(a)<t_{\text {visited }}(b)<t_{\text {done }}(b)<t_{\text {done }}(a)$

- Cross Edge

- (a, b) goes to a node that doesn't connect to a
- b was seen and done before a was ever visited
- $t_{\text {done }}(b)<t_{\text {visited }}(a)$

Cycle Detection

Idea: Look for a back edge!

boolean hasCycle(graph, curr)\{
mark curr as "visited";
cycleFound = false; for (v : neighbors(current))\{
if (v marked "visited" \&\& ! v marked "done")\{ cycleFound=true;
\}
if (! v marked "visited" \&\& !cycleFound)\{ cycleFound = hasCycle(graph, v);
\}
\}
mark curr as "done"; return cycleFound;

Topological Sort

- A Topological Sort of a directed acyclic graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

DFS Recursively

void dfs(graph, curr)\{
mark curr as "visited"; for (v: neighbors(current))\{ if (! v marked "visited")\{ dfs(graph, v);
\}
\}
mark curr as "done";

DFS: Topological sort

def dfs(graph, s):
seen = [False, False, False, ...] \# length matches $|V|$ done = [False, False, False, ...] \# length matches $|V|$ dfs_rec(graph, s, seen, done)
def dfs_rec(graph, curr, seen, done):
mark curr as seen
for v in neighbors(current):
if v not seen:
mark curr as done
def dfs_rec(graph, curr, seen, done):
dfs_rec(graph, v, seen, done)

Idea: List in reverse order by finish time

DFS Recursively

void dfs(graph, curr)\{

Idea: List in reverse order by finish time
mark curr as "visited";
for (v: neighbors(current))\{
if (! v marked "visited")\{
dfs(graph, v);
\}
\}
mark curr as "done";
\}

DFS: Topological sort

List topSort(graph)\{

List<Nodes> finished = new List<>();
for (Node v : graph.vertices)\{
if (!v.visited)\{
finishTime(graph, v, finished);
\}
\}
finished.reverse(); return finished;

Idea: List in reverse order by finish time
void finishTime(graph, curr, finished)\{

```
curr.visited = true;
for (Node v : curr.neighbors){
            if (!v.visited){
                finishTime(graph, v, finished);
    }
}
finished.add(curr)
```


