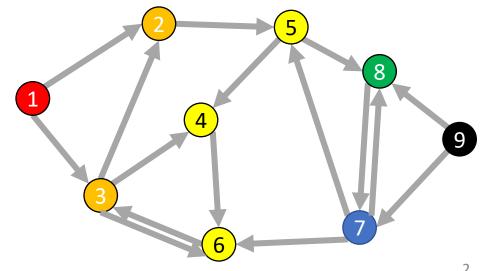
CSE 332 Autumn 2023 Lecture 21: Dijkstra's

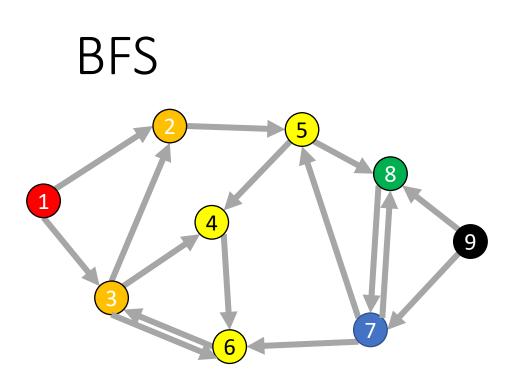
Nathan Brunelle

http://www.cs.uw.edu/332

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?



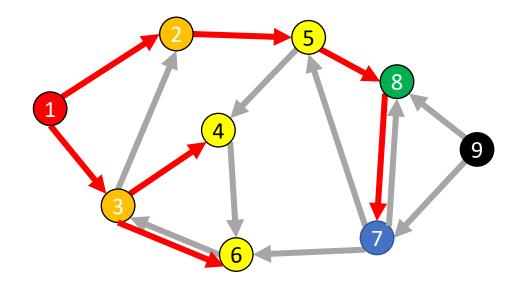


Running time: $\Theta(|V| + |E|)$

void bfs(graph, s){ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.enqueue(v);

3

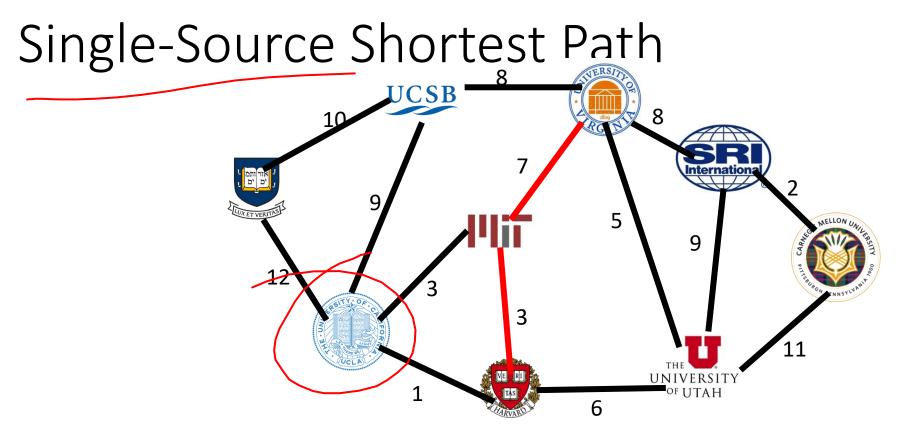
Shortest Path (unweighted)



Idea: when it's seen, remember its "layer" depth!

int shortestPath(graph, s, t){ found = new Queue(); layer = 0;found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v);

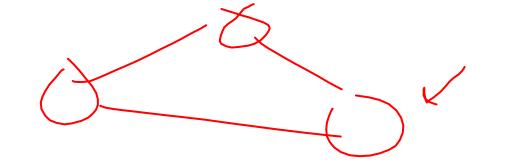
return depth of t;



Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)



-3

8

Some "Tricky" Observations

- Shortest path by sum of edge weights does not necessarily use the fewest edges.
- Negative Edges:

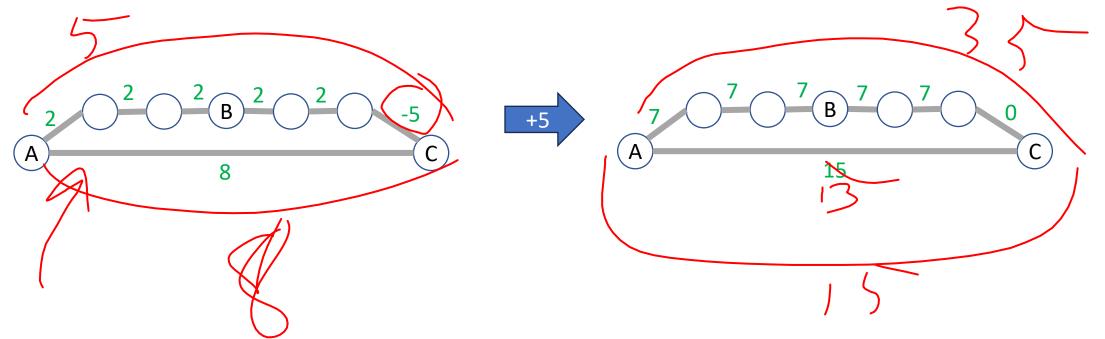
8

Today's algorithm assumes that a path from A to B cannot be longer than a path from A to B to C.

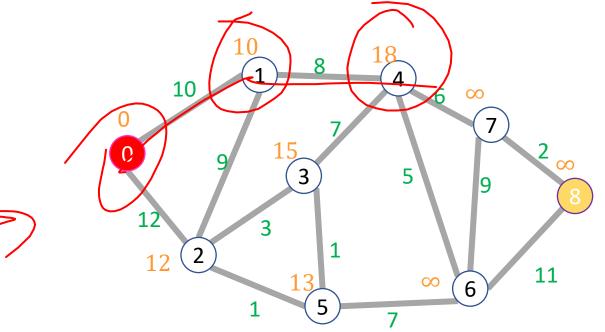
- Assumption is guaranteed to be true if no edges have negative weights
- If there are negative weight cycles, problem is ill-defined

Dealing with Negative Edges (Incorrectly)

- Why doesn't this work?
 - Take the most negative edge and add it's absolute value to every other edge



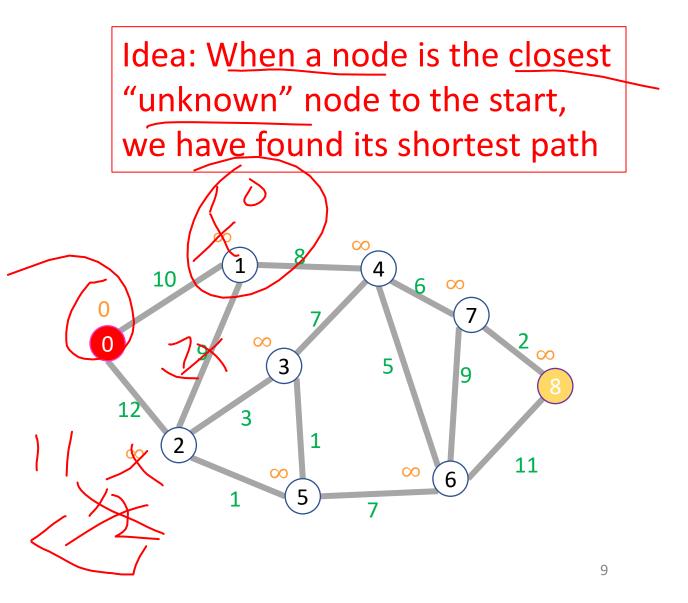
- Input: graph with **no negative edge weights**, start node *s*, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node



Dijkstra's Algorithm Start: 0 End: 8

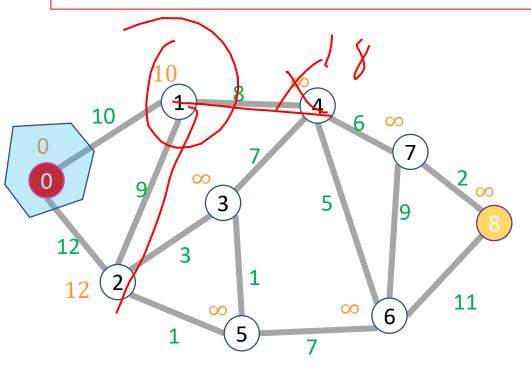
de	Done?	Node	Distance
	F	0	0
	F	1	∞
	F	2	∞
	F	3	∞
	F	4	∞
	F	5	∞
	F	6	∞
	F	7	∞
	F	8	∞

No



Dijkstra's Algorithm End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞



Dijkstra's Algorithm Start: 0 End: 8

lode	Done?	Node	Distance
	т	0	0
	Т	1	10
	F	2	12
	F	3	∞
	F	4	18
	F	5	∞
	F	6	∞
	F	7	∞
	F	8	∞

Ν

0

1

2

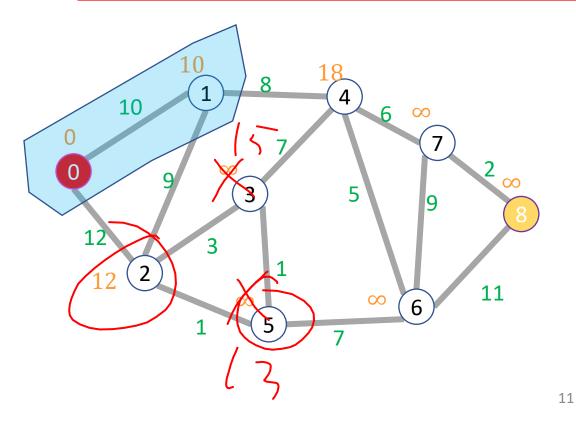
3

4

5

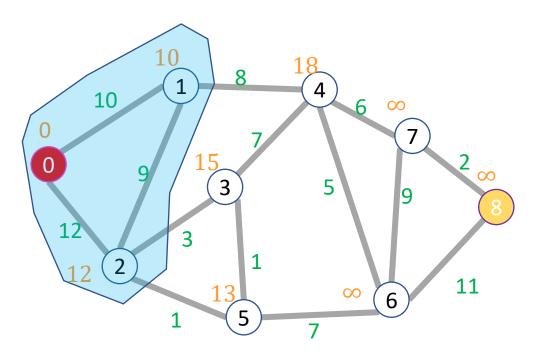
6

8



Dijkstra's Algorithm End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	15
4	F	4	18
5	F	5	13
6	F	6	∞
7	F	7	∞
8	F	8	∞



Dijkstra's Algorithm Start: 0 End: 8

ode	Done?	Node	Distance
	т	0	0
	Т	1	10
	Т	2	12
	F	3	14
	F	4	18
	Т	5	13
	F	6	∞
	F	7	20
	F	8	∞

N

0

1

2

3

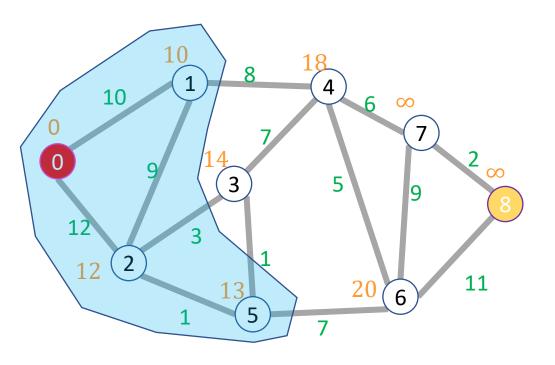
4

5

6

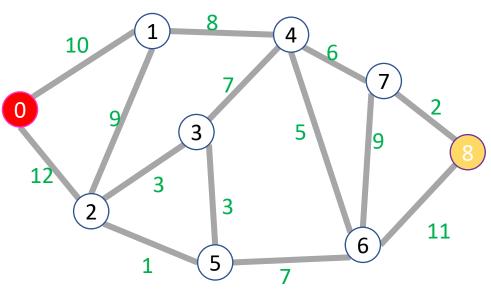
7

8



Dijkstra's Algorithm

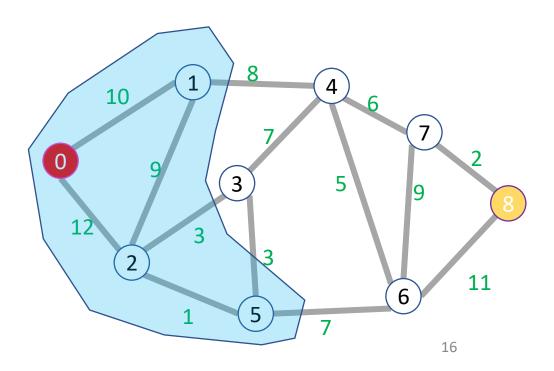
```
int dijkstras(graph, start, end){
         PQ = new minheap();
         PQ.insert(0, start); // priority=0, value=start
         start.distance = 0;
         while (!PQ.isEmpty){
                                                                               2
                  current = PQ.extractmin();
                  if (current.known){ continue;}
                  current.known = true;
                  for (neighbor : current.neighbors){
                           if (!neighbor.known){
                                    new dist = current.distance + weight(current,neighbor);
                                    if(neighbor.dist != \infty){ PQ.insert(new_dist, neighbor);}
                                    else if (new_dist < neighbor. distance){</pre>
                                              neighbor. distance = new_dist;
                                              PQ.decreaseKey(new_dist,neighbor); }
         return end.distance;
```



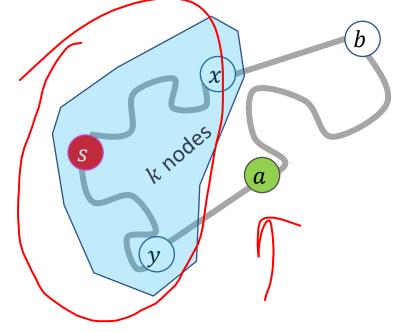
Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
 - How many times is each node added to the priority queue?
 - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:

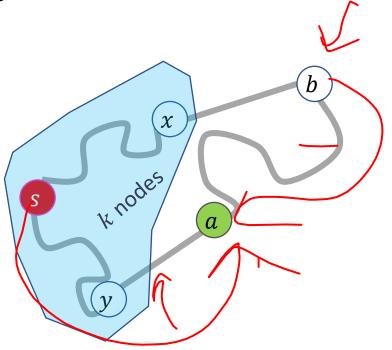
- Claim: when a node is removed from the priority queue, we have found its shortest path $\mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M}$
- Induction over number of completed nodes
- Base Case: 5 / 1 / 1
 Inductive Step:



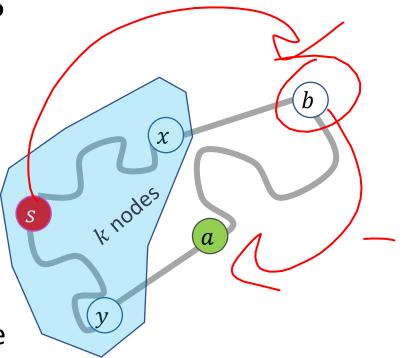
- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
 - It is indeed 0 away from itself
- Inductive Step:
 - If we have correctly found shortest paths for the first k nodes, then when we remove node k + 1 we have found its shortest path



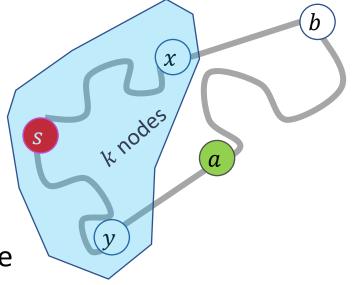
• Suppose <u>a</u> is the next node removed from the queue. What do we know bout <u>a</u>?



- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
 - Consider any other incomplete node *b* that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - Thus no path that includes *b* can be a shorter path to *a*
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



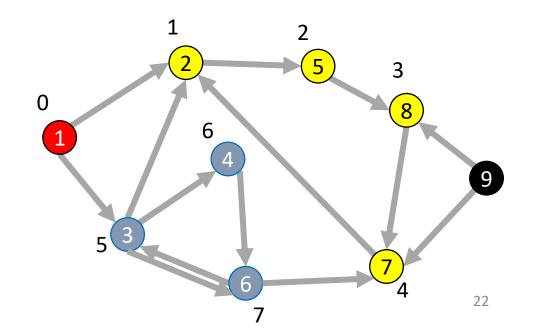
- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
 - Consider any other incomplete node b that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - No path from *b* to *a* can have negative weight
 - Thus no path that includes *b* can be a shorter path to *a*
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



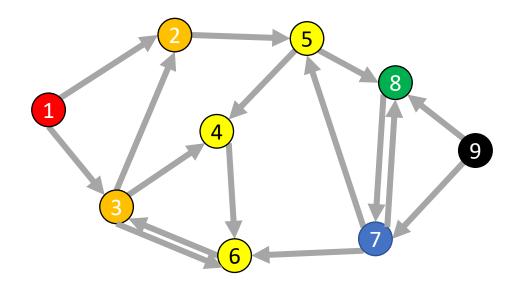
Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.



DFS (non-recursive)

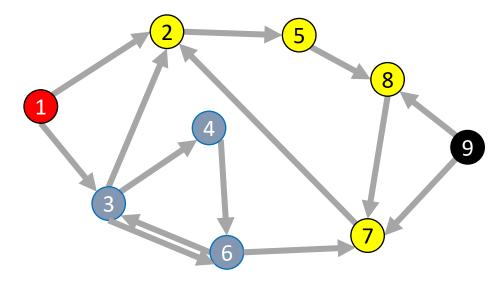


Running time: $\Theta(|V| + |E|)$

void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

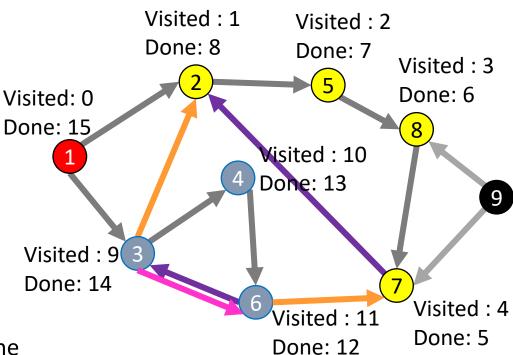
DFS Recursively (more common)

```
void dfs(graph, curr){
    mark curr as "visited";
    for (v : neighbors(current)){
        if (! v marked "visited"){
            dfs(graph, v);
            }
        mark curr as "done";
```

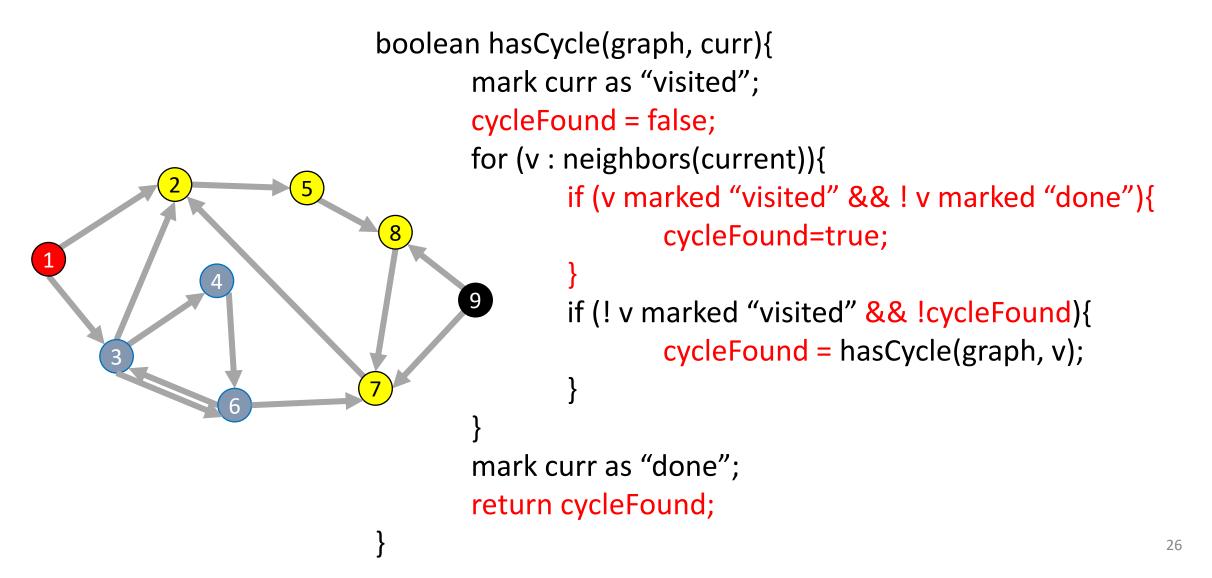


Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (*a*, *b*) was followed when pushing
 - (*a*, *b*) when *b* was unvisited when we were at *a*
 - Back Edge
 - (*a*, *b*) goes to an "ancestor"
 - *a* and *b* visited but not done when we saw (*a*, *b*)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (*a*, *b*) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (*a*, *b*) goes to a node that doesn't connect to *a*
 - *b* was seen and done before *a* was ever visited
 - $t_{done}(b) < t_{visited}(a)$

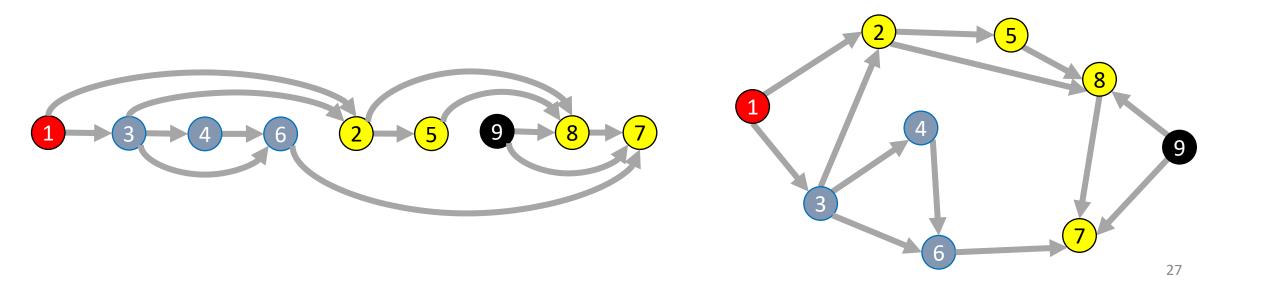


Cycle Detection



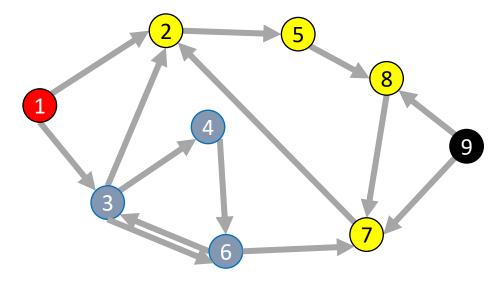
Topological Sort

• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation



DFS Recursively

```
void dfs(graph, curr){
    mark curr as "visited";
    for (v : neighbors(current)){
        if (! v marked "visited"){
            dfs(graph, v);
            }
        mark curr as "done";
```



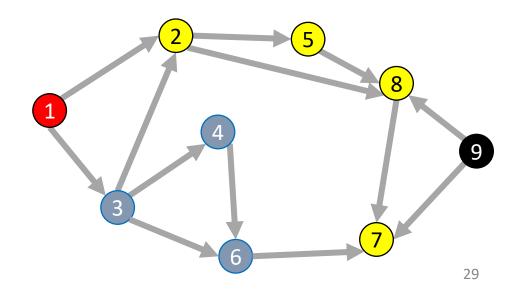
DFS: Topological sort

def dfs(graph, s):

seen = [False, False, False, ...] # length matches |V|
done = [False, False, False, ...] # length matches |V|
dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done): mark curr as seen for v in neighbors(current): if v not seen: dfs_rec(graph, v, seen, done) mark curr as done

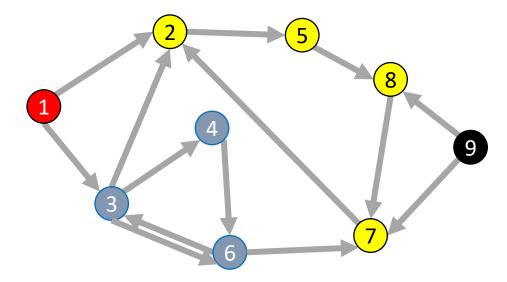
Idea: List in reverse order by finish time



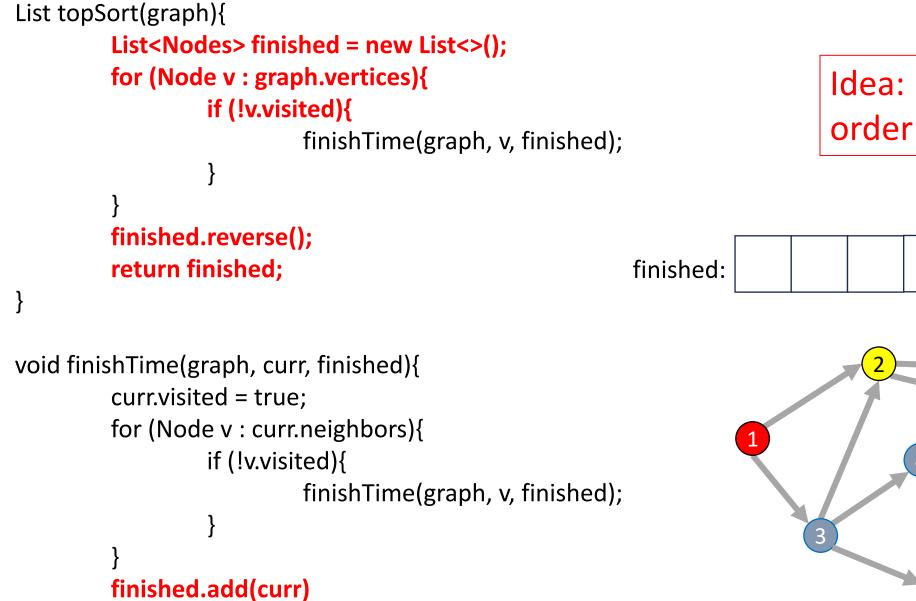
DFS Recursively

```
void dfs(graph, curr){
    mark curr as "visited";
    for (v : neighbors(current)){
        if (! v marked "visited"){
            dfs(graph, v);
            }
        mark curr as "done";
```

Idea: List in reverse order by finish time



DFS: Topological sort



Idea: List in reverse order by finish time

