
CSE 332 Autumn 2023
Lecture 22: ForkJoin Analysis

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

New Story
Threads, each with its own unshared:

Call Stack
Program Counter

Local Variables (primitives and references
to Heap objects)

Heap Containing Objects and
Static Fields

Back to Summing an Array

• Goal: Find the sum of an array

• Idea: 4 threads each find the sum of one quarter of the array

• Process:
• Create 4 thread objects, each given a portion of the work

• Call start() on each thread object to run it in parallel

• Wait for threads to finish using join()

• Add together their 4 answers for the final result

+

+ + + +

Parallel Sum
• Base Case:

• If the list’s length is smaller than the Sequential Cutoff, find the sum
sequentially

• Divide:
• Split the list into two “sublists” of (roughly) equal length, create a

thread to sum each sublist.

• Conquer:
• Call start() for each thread

• Combine:
• Sum together the answers from each thread

4

5

5 8 2

9 4 1

5 8 2 9 4 1

ans=14

ans=15

ans=29

Divide and Conquer with Threads
class SumThread extends java.lang.Thread {

 public void run(){ // override

 if(hi – lo < SEQUENTIAL_CUTOFF) // “base case”

 for(int i=lo; i < hi; i++) ans += arr[i];

 else {

 SumThread left = new SumThread(arr,lo,(hi+lo)/2); // divide

 SumThread right= new SumThread(arr,(hi+lo)/2,hi); // divide

 left.start(); // conquer

 right.start(); // conquer

 left.join(); // don’t move this up a line – why?

 right.join();

 ans = left.ans + right.ans; // combine

 }

 }

}

int sum(int[] arr){ // just make one thread!

 SumThread t = new SumThread(arr,0,arr.length);

 t.run();

 return t.ans; }

ForkJoin Framework

• This strategy is common enough that Java (and C++, and C#, and…)
provides a library to do it for you!

What you would do in Threads What to instead in ForkJoin

Subclass Thread Subclass RecursiveTask<V>

Override run Override compute

Store the answer in a field Return a V from compute

Call start Call fork

join synchronizes only join synchronizes and returns the answer

Call run to execute sequentially Call compute to execute sequentially

Have a topmost thread and call run Create a pool and call invoke

Divide and Conquer with ForkJoin
class SumTask extends RecursiveTask<Integer> {

 int lo; int hi; int[] arr; // fields to know what to do

 SumTask(int[] a, int l, int h) { … }

 protected Integer compute(){// return answer

 if(hi – lo < SEQUENTIAL_CUTOFF) { // base case

 int ans = 0; // local var, not a field

 for(int i=lo; i < hi; i++) {

 ans += arr[i]; }

 return ans;}

 else {

 SumTask left = new SumTask(arr,lo,(hi+lo)/2); // divide

 SumTask right= new SumTask(arr,(hi+lo)/2,hi); // divide

 left.fork(); // fork a thread and calls compute (conquer)

 int rightAns = right.compute(); //call compute directly (conquer)

 int leftAns = left.join(); // get result from left

 return leftAns + rightAns; // combine

 }

 }

}

Divide and Conquer with ForkJoin (continued)

static final ForkJoinPool POOL = new ForkJoinPool();

int sum(int[] arr){

 SumTask task = new SumTask(arr,0,arr.length)

 return POOL.invoke(task); // invoke returns the value compute returns

}

Find Max with ForkJoin
class MaxTask extends RecursiveTask<Integer> {

 int lo; int hi; int[] arr; // fields to know what to do

 SumTask(int[] a, int l, int h) { … }

 protected Integer compute(){// return answer

 if(hi – lo < SEQUENTIAL_CUTOFF) { // base case

 int ans = Integer.MIN_VALUE; // local var, not a field

 for(int i=lo; i < hi; i++) {

 ans = Math.max(ans, arr[i]);}

 return ans;

 else {

 MaxTask left = new MaxTask(arr,lo,(hi+lo)/2); // divide

 MaxTask right= new MaxTask(arr,(hi+lo)/2,hi); // divide

 left.fork(); // fork a thread and calls compute (conquer)

 int rightAns = right.compute(); //call compute directly (conquer)

 int leftAns = left.join(); // get result from left

 return Math.max(rightAns, leftAns); // combine

 }

 }

}

Other Problems that can be solved similarly

• Element Search
• Is the value 17 in the array?

• Counting items with a certain property
• How many elements of the array are divisible by 5?

• Checking if the array is sorted

• Find the smallest rectangle that covers all points in the array

• Find the first thing that satisfies a property
• What is the leftmost item that is divisible by 20?

Reductions

• All examples of a category of computation called a reduction
• We “reduce” all elements in an array to a single item

• Requires operation done among elements is associative
• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧)

• The “single item” can itself be complex
• E.g. create a histogram of results from an array of trials

Map

• Perform an operation on each item in an array to create a new array
of the same size

• Examples:
• Vector addition:

• sum[i] = arr1[i] + arr2[i]

• Function application:
• out[i] = f(arr[i]);

Map with ForkJoin
class AddTask extends RecursiveAction {

 int lo; int hi; int[] arr; // fields to know what to do

 AddTask(int[] a, int[] b, int[] sum, int l, int h) { … }

 protected void compute(){// return answer

 if(hi – lo < SEQUENTIAL_CUTOFF) { // base case

 for(int i=lo; i < hi; i++) {

 sum[i] = a[i] + b[i];}

 else {

 AddTask left = new AddTask(a,b,sum,lo,(hi+lo)/2); // divide

 AddTask right= new AddTask(a,b,sum,(hi+lo)/2,hi); // divide

 left.fork(); // fork a thread and calls compute (conquer)

 right.compute(); //call compute directly (conquer)

 left.join(); // get result from left

 return; // combine

 }

 }

}

Map with ForkJoin (continued)

static final ForkJoinPool POOL = new ForkJoinPool();

Int[] add(int[] a, int[] b){

 ans = new int[a.length];

 AddTask task = new AddTask(a, b, ans, 0, a.length)

 POOL.invoke(task);

 return ans;

}

Maps and Reductions

• “Workhorse” constructs in parallel programming

• Many problems can be written in terms of maps and reductions

• With practice, writing them will become second nature
• Like how over time for loops and if statements have gotten easier

Parallel Algorithm Analysis

• How to define efficiency
• Want asymptotic bounds

• Want to analyze the algorithm without regard to a specific number of
processors

Work and Span

• Let 𝑇𝑃 𝑛 be the running time if there are 𝑃 processors available

• Two key measures of run time:
• Work: How long it would take 1 processor, so 𝑇1 𝑛

• Just suppose all forks are done sequentially

• Cumulative work all processors must complete

• For array sum: Θ(𝑛)

• Span: How long it would take an infinite number of processors, so 𝑇∞ 𝑛
• Theoretical ideal for parallelization

• Longest “dependence chain” in the algorithm

• Also called “critical path length” or “computation depth”

• For array sum: Θ(log 𝑛)

Directed Acyclic Graph (DAG)

• A directed graph that has no cycles

• Often used to depict dependencies
• E.g. software dependencies, Java inheritance, dependencies among threads!

1

2

3

ForkJoin DAG

• Fork and Join each create a new node
• Fork branches into two threads

• Those two threads “depended on” their source thread to be created

• Join combines to threads
• The thread doing the combining “depends on” the other threads to finish

Divide

Combine

Base Cases

More Vocab

• Speed Up:
• How much faster (than one processor) do we get for more processors

• 𝑇1 𝑛 /𝑇𝑃 𝑛

• Perfect linear Speedup

•
𝑇1

𝑇𝑃
= 𝑃

• Hard to get in practice
• “Holy Grail” or parallelizing

• Parallelism
• Maximum possible speedup

• 𝑇1/𝑇∞
• At some point more processors won’t be more helpful, when that point is depends on the span

• Writing parallel algorithms is about increasing span without substantially increasing work

Asymptotically Optimal 𝑇𝑃

• We know how to compute 𝑇1 and 𝑇∞, but what about 𝑇𝑃?

• 𝑇𝑃 cannot be better than
𝑇1

𝑃

• 𝑇𝑃cannot be better than 𝑇∞

• An asymptotically optimal execution would be

• 𝑇𝑃 𝑛 ∈ 𝑂
𝑇1 𝑛

𝑃
+ 𝑇∞ 𝑛

• 𝑇1(𝑛)/𝑃 dominates for small 𝑃, 𝑇∞ 𝑛 dominates for large 𝑃

• ForkJoin Frameworks gives an expected time guarantee of
asymptotically optimal!

Division of Responsibility

• Our job as ForkJoin Users:
• Pick a good algorithm, write a program

• When run, program creates a DAG of things to do

• Make all the nodes a small-ish and approximately equal amount of work

• ForkJoin Framework Developer’s job:
• Assign work to available processors to avoid idling

• Abstract away scheduling issues for the user

• Keep constant factors low

• Give the expected-time optimal guarantee

And now for some bad news…

• In practice it’s common for your program to have:
• Parts that parallelize well

• Maps/reduces over arrays and other data structures

• And parts that don’t parallelize at all
• Reading a linked list, getting input, or computations where each step needs the results of

previous step

• These unparallelized parts can turn out to be a big bottleneck

Amdahl’s Law (mostly bad news)

• Suppose 𝑇1 = 1
• Work for the entire program is 1

• Let 𝑆 be the proportion of the program that cannot be parallelized
• 𝑇1 = 𝑆 + 1 − 𝑆 = 1

• Suppose we get perfect linear speedup on the parallel portion

• 𝑇𝑃 = 𝑆 +
1−𝑆

𝑃

• For the entire program, the speed is:

•
𝑇1

𝑇𝑃
=

1

𝑆+
1−𝑆

𝑃

• And so the parallelism (infinite processors) is:

•
𝑇1

𝑇_∞
=

1

𝑆

Ahmdal’s Law Example

• Suppose 2/3 of your program is parallelizable, but 1/3 is not.

• 𝑆 =
2

3

• 𝑇1 =
2

3
+

1

3
= 1

• 𝑇𝑃 = 𝑆 +
1−𝑆

𝑃

• So if 𝑇1 is 100 seconds:

• 𝑇𝑃 = 33 +
67

𝑃

• 𝑇3 = 33 +
67

3
= 33 + 22 = 55

Conclusion

• Even with many many processors the sequential part of your program
becomes a bottleneck

• Parallelizable code requires skill and insight from the developer to
recognize where parallelism is possible, and how to do it well.

	Slide 1: CSE 332 Autumn 2023 Lecture 22: ForkJoin Analysis
	Slide 2: New Story
	Slide 3: Back to Summing an Array
	Slide 4: Parallel Sum
	Slide 5: Divide and Conquer with Threads
	Slide 6: ForkJoin Framework
	Slide 7: Divide and Conquer with ForkJoin
	Slide 8: Divide and Conquer with ForkJoin (continued)
	Slide 9: Find Max with ForkJoin
	Slide 10: Other Problems that can be solved similarly
	Slide 11: Reductions
	Slide 12: Map
	Slide 13: Map with ForkJoin
	Slide 14: Map with ForkJoin (continued)
	Slide 15: Maps and Reductions
	Slide 16: Parallel Algorithm Analysis
	Slide 17: Work and Span
	Slide 18: Directed Acyclic Graph (DAG)
	Slide 19: ForkJoin DAG
	Slide 20: More Vocab
	Slide 21: Asymptotically Optimal cap T sub cap P
	Slide 22: Division of Responsibility
	Slide 23: And now for some bad news…
	Slide 24: Amdahl’s Law (mostly bad news)
	Slide 25: Ahmdal’s Law Example
	Slide 26: Conclusion

