CSE 332 Autumn 2023
Lecture 22: ForkJoin Analysis

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

X = L ey
X — e > YA

Threads, each with its own unshared: Heap Containing Objectsand \
Call Stack tatic Fields

Program Counter
| ocal Variables (primitives and references o
—__toHeap objects) T——
R
—

New Story

L

Back to Summing an Array

e Goal: Find the sum of an array
* |dea: 4 threads each find the sum of one quarter of the array

* Process:
* Create 4 thread objects, each given a portion of the work
 Call start() on each thread object to run it in parallel
* Wait for threads to finish using join()
* Add together their 4 answersfar the final re

A‘A

Parallel Sum
c * Base Case:
"« If the list’s length is smaller than the Sequential Cutoff, find the sum
sequentially

5 2
500 *Divide:
n Split the list into two “sublists” of (roughly) equal length, create a

thread to sum each sublist.

*-Conquer:
~ o Call start() for each thread

-EombMeS
* Sum together the answers from each thread

Divide and Conquer with Threads

class SumThread extends java.lang.Thread {
public void run(){ // override
if(hi —lo < EEQUENTIAL_CUTOE:/) // “base case”
&for(int i=lo; T < hi; i++) ans += arr[i];
else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2); // divide
SumThread @= new SumThread(arr,(hi+lo)/2,hi); // divide
left.start(); // conquer

right.start(); // conquer

left-join(); // don’t move this up a line — why?

right.join();

ans = left.ans + right.ans; // combine

} —_—

}

int sum(int[] arr){ // just make one thread!
SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans; }

‘Forkloin Framework

* This strategy is common enough that Java (and C++, and C#, and...)
provides a library to do it for you!

What you would do in Threads What to instead in ForkJoin
Subcla@ Subclass RecursiveTask<V>

Override run Override compute

Store the answer in a field Return a V from compute

Call start Call fork

join synchronizes only join synchronizes and returns the answer
Call run to execute sequentially Call compute to execute sequentially

Have a topmost thread and call run Create a pool and call invoke

Divide and Conqguer with ForkJoin

class 9k extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int |, inth) {...}
protected Integer compute(){// return answer M ﬁ
if(hi — lo < SEQUENTIAL_CUTOFF) { // base case)/
int ans%/ local var, not a field
for(int i=lo; i < hi; i++) {

ans += arrl[i]; } Z BN -
returnaan';}’_\ 5 -_’//,4\44 }/bld/(_/ééjg

else {
SumTask left = new SumTask(arr,lo,(hi+lo)/2); // divide

S~ /
4, f S -
SumTask right= new SumTask(arr,(hi+lo)/2,hi); // divide @

left.fork(); // fork a thread and calls compute (conquer)
int rightAns = right.compute(); //call compute directly (conquer)

int leftAns = left.join(); // get result from left
return |[eftAns + rightAns;\// combine
} M4+
] Tl %
} e

Divide and Conquer with ForkJoin (continued)

static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){
SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task); // invoke returns the value compute returns

Find Max with ForkJoin

class MaxTask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int |, inth) {...}
protected Integer compute(){// return answer
if(hi —lo < SEQUENTIAL_CUTOFF) { // base case
int ans = Integer.MIN_VALUE; // local var, not a field
for(int i=lo; i < hi; i++) {
ans = Math.max(ans, arr[i]);}
return ans;
else {
MaxTask left = new MaxTask(arr,lo,(hi+lo)/2); // divide
MaxTask right= new MaxTask(arr,(hi+lo)/2,hi); // divide
left.fork(); // fork a thread and calls compute (conquer)
int rightAns = right.compute(); //call compute directly (conquer)
int leftAns = left.join(); // get result from left
return Math.max(rightAns, leftAns); // combine

Other Problems that can be solved similarly

* Element Search
* |sthe value 17 in the array?

* Counting items with a certain property
* How many elements of the array are divisible by 5?

* Checking if the arrayﬂ)rted
* Find the smallest rectangle that covers all points in the array

* Find the first thing that satisfies a property
* What is the leftmost item that is divisible by 20?

Reductions |

* All examples of a category of computation called a reduction

* We ‘Z’rﬁi_uc\e’/’ all elements in an array to a single item

* Requires operation done among elements is associative
\
« (x +z=x+(y +2)

* The “single item” can itself be comple
* E.g. create a histogram of results from an array of trials

A=

| (&’/QJ?%

Map
| —

* Perform an,operation on each item in an array to create a new array
of the sameLSiZE\—5

* Examples: / (?/

e sumli] = arrl[i] + arr2][i] / S_
* Function application:
» out[i] = f(arrli]); [

—AMap, with ForkJoin

cIasugask extend Reem‘sw?@
int lo; int hi; int[] arr; // fields to know what to do

AddTask(int[] a, int[] b, int[] sum, int |, inth) {... } <// \
protected void compute(){// return answer
SEQL G \/

if(hi — lo < SEQUENTIAL_CUTOFF) { // base case
for(int i=lo; i < hi; i++) {
sum[i] = a[i] + b[i];}

/\

else {

AddTask left = new AddTask(a, b sum,lo,(hi+lo)/2); // divide
AddTask right= new AddTask(a b,sum,(hi+lo)/2,hi); // divide
left.fork(); // fork a thread and caIIs compute (conquer)

right.compute(); //call compute directly (conquer)
left.join(); // get result from left

Map with ForkJoin (continued)

static final ForkJoinPool POOL = new ForkJoinPool();
Int[] add(int[] a, int[] b){
ans = new int[a.length];
AddTask task = new AddTask(a, b, ans, 0, a.length)
POOL.invoke(task);
return ans;

Maps andR uct\J L//WW o d [<
W o A

“Workhorse” constructs in parallel programming _~ /

/ .
* Many problems can be written in terms of maps and reductions

—

* With practice, writing them will becomew nature)
 Like how over timeMand if statements have gotten easier

Parallel Algorithm Analysis

* How to define efficiency
* Want asymptotic bounds

* Want to analyze the algorithm without regard to a specific number of
processors

—_—

. Let,M be the running time if there are E)orocessors available
* Two key measures of run time:

* Work: How long it would take 1 processor, sozjl(n) ,
* Just suppose all forks are done sequentially
* _Cumulative wo\r‘R’aIT'Z)rocessors must complete
* For array sum: ©(n)

* Span: How long it would take an infinite number of processors, so T, (n)
* Theoretical ideal for parallelization B

* Longest ”g\e‘;emlem(/eg@_” in the algorithm
* Also calle itical path length” or “computation depth”

* For ?rray sum: O(logn)

Directed Acyclic Graph (DAG)

* A directed graph that has no cycles

e Often used to depict dependencies
* E.g. software dependencies, Java inheritance, dependencies among threads!

ForkJoin DAG

 Fork and Join each create a new node

* Fork branches into two threads
* Those two threads “depended on” their source thread to be created

 Join combines to threads
* The thread doing the co v o g “depends on” the other threads to finish

90 @ — o
O Q O QQ Q O Q Base Cases
0N A L

O

More Vocab

« /Speed Up:
~—+* _How much faster (than one processor) do we get for more processors

— _——

*/ Perfect linear Speedu&]

ard to get in practice
e “Holy Grail” or parallelizing

. Paral elism

imum possible speedup
* T1/T <
t some point more processors won’t be more helpful, when that point is depends on the span
—_— C

. Writing parallel algorithms is about increasing span without substantially increasing work
Sl — e ‘s Wo

Asymptotically Optimal Tp

* We know how to compute T; and T, but what about Tp?
* Tp cannot be better than%

e Trcannot be better than T,

* An asymptotically optimal execution would be

e To(n) € 0 (Tl(") + Too(n)) T—

P
« T;(n)/P dominates for small P, T, (n) dominates for large P

* ForklJoin Framewaorks gives an expected time guarantee of
asymptotically optimal!

Division of Responsibility

* Our job as[ForkJoin Users:

* Pick a good algorithm, write a program
* When run, program creates a DAG of things to do
* Make all the nodes a small-ish and approximately equal amount of work

* ForkJoin Framework D@bper’s job:

* Assign work to available processors to avoid idling
* Abstract away scheduling issues for the user
e Keep constant factors low
_/

* Give the expected-time optimal guarantee

And now for;some bad news.,.

* In practice it’'s common for your program to have:
* Parts that parallelize well

e

* Maps/reduces over arrays and other data structures

* And parts that don’t parallelize at all g

* Readingalinked list, getting input, or computations where each step needs the results of
previous step

* These unparallelized parts can turn out to be a big bottleneck

Amdahl’s Law (mostly bad news)

* SupposeT; =1
* Work for the entire programis 1

* Let S be the proportion of the program that cannot be parallelized
T, =S+(1-5)=1

* Suppose we get perfect linear speedup on the parallel portion

¢ Tp —_ S + 1T?S
* For the entire program, the speed is:
e __1
Tp S+1%9
* And so the parallelism (infinite processors) is:
Ty 1

T oo S

Ahmdal’s Law Example

» Suppose 2/3 of your program is parallelizable, but 1/3 is not.

* Soif T; is 100 seconds:
¢ Tp :33+%
* Ty =33+ =33+22 =55

Conclusion

* Even with many many processors the sequential part of your program
becomes a bottleneck

 Parallelizable code requires skill and insight from the developer to
recognize where parallelism is possible, and how to do it well.

	Slide 1: CSE 332 Autumn 2023 Lecture 22: ForkJoin Analysis
	Slide 2: New Story
	Slide 3: Back to Summing an Array
	Slide 4: Parallel Sum
	Slide 5: Divide and Conquer with Threads
	Slide 6: ForkJoin Framework
	Slide 7: Divide and Conquer with ForkJoin
	Slide 8: Divide and Conquer with ForkJoin (continued)
	Slide 9: Find Max with ForkJoin
	Slide 10: Other Problems that can be solved similarly
	Slide 11: Reductions
	Slide 12: Map
	Slide 13: Map with ForkJoin
	Slide 14: Map with ForkJoin (continued)
	Slide 15: Maps and Reductions
	Slide 16: Parallel Algorithm Analysis
	Slide 17: Work and Span
	Slide 18: Directed Acyclic Graph (DAG)
	Slide 19: ForkJoin DAG
	Slide 20: More Vocab
	Slide 21: Asymptotically Optimal cap T sub cap P
	Slide 22: Division of Responsibility
	Slide 23: And now for some bad news…
	Slide 24: Amdahl’s Law (mostly bad news)
	Slide 25: Ahmdal’s Law Example
	Slide 26: Conclusion

