
CSE 332 Autumn 2023
Lecture 24: Concurrency

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Reasons to use threads (beyond algorithms)

• Code Responsiveness:
• While doing an expensive computation, you don’t what your interface to

freeze

• Processor Utilization:
• If one thread is waiting on a deep-hierarchy memory access you can still use

that processor time

• Failure Isolation:
• If one portion of your code fails, it will only crash that one portion.

Memory Sharing With ForkJoin

• Idea of ForkJoin:
• Reduce span by having many parallel tasks

• Each task is responsible for its own portion of the input/output

• If one task needs another’s result, use join() to ensure it uses the final answer

• This does not help when:
• Memory accessed by threads is overlapping or unpredictable

• Threads are doing independent tasks using same resources (rather than
implementing the same algorithm)

Example: Shared Queue

enqueue(x){
 if (back == null){
 back = new Node(x);
 front = back;
 }
 else {
 back.next = new Node(x);
 back = back.next;
 }
}

Imagine two threads are both using the
same linked list based queue.

What could go wrong?

Concurrent Programming

• Concurrency:
• Correctly and efficiently managing access to shared resources across multiple

possibly-simultaneous tasks

• Requires synchronization to avoid incorrect simultaneous access
• Use some way of “blocking” other tasks from using a resource when another

modifies it or makes decisions based on its state
• That blocking task will free up the resource when it’s done

• Warning:
• Because we have no control over when threads are scheduled by the OS, even

correct implementations are highly non-deterministic
• Errors are hard to reproduce, which complicates debugging

Bank Account Example
• The following code implements a bank account object correctly for a synchronized situation

• Assume the initial balance is 150

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 // other operations like deposit, etc.

}

withdraw(100);
withdraw(75)

What Happens here?

Bank Account Example - Parallel
• Assume the initial balance is 150

class BankAccount {
 private int balance = 0;
 int getBalance() { return balance; }
 void setBalance(int x) { balance = x; }
 void withdraw(int amount) {
 int b = getBalance();
 if (amount > b)
 throw new WithdrawTooLargeException();
 setBalance(b – amount); }
 // other operations like deposit, etc.
}

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

Interleaving

• Due to time slicing, a thread can be interrupted at any time
• Between any two lines of code

• Within a single line of code

• The sequence that operations occur across two threads is called an
interleaving

• Without doing anything else, we have no control over how different
threads might be interleaved

A “Good” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

A “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

Another result?
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

int b = getBalance();
if (amount > b)
 throw new Exception();
setBalance(b – amount);

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);

A Bad Fix
• Assume the initial balance is 150

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 if (amount > getBalance())

 throw new WithdrawTooLargeException();

 setBalance(getBalance() – amount); }

 // other operations like deposit, etc.

}

A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

if (amount > getBalance())
 throw new Exception();
setBalance(getBalance() – amount);

setBalance(getBalance() – amount);

if (amount > getBalance())

 throw new Exception();
setBalance(getBalance() – amount);

What we want – Mutual Exclusion

• While one thread is withdrawing from the account, we want to
exclude all other threads from also withdrawing

• Called mutual exclusion:
• One thread using a resource (here: a bank account) means another thread

must wait

• We call the area of code that we want to have mutual exclusion (only one
thread can be there at a time) a critical section.

• The programmer must implement critical sections!
• It requires programming language primitives to do correctly

A Bad attempt at Mutual Exclusion
class BankAccount {

 private int balance = 0;

 private Boolean busy = false;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 while (busy) { /* wait until not busy */ }

 busy = true;

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 busy = false;}

 // other operations like deposit, etc.

}

A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

withdraw(75);

Thread 2:

while (busy) { /* wait until not busy */ }

busy = true;

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);
busy = false;

while (busy) { /* wait until not busy */ }
busy = true;

int b = getBalance();

if (amount > b)
 throw new Exception();
setBalance(b – amount);
busy = false;

Solution

• We need a construct from Java to do this

• One Solution – A Mutual Exclusion Lock (called a Mutex or Lock)

• We define a Lock to be a ADT with operations:
• New:

• make a new lock, initially “not held”

• Acquire:
• If lock is not held, mark it as “held”

• These two steps always done together in a way that cannot be interrupted!

• If lock is held, pause until it is marked as “not held”

• Release:
• Mark the lock as “not held”

Almost Correct Bank Account Example
class BankAccount {

 private int balance = 0;

 private Lock lck = new Lock();

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 lk.acquire();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 lk.release();}

 // other operations like deposit, etc.

}

Questions:
1. What is the critical section?
2. What is the Error?

Try…Finally

• Try Block:
• Body of code that will be run

• Finally Block:
• Always runs once the program exits try block (whether due to a return,

exception, anything!)

Correct (but not Java) Bank Account Example
class BankAccount {

 private int balance = 0;

 private Lock lck = new Lock();

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 try{

 lk.acquire();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 finally { lk.release(); } }

 // other operations like deposit, etc.

}

Questions:
1. Should deposit have its own

lock object, or the same one?
2. What about getBalance?
3. What about setBalance?

A still “Bad” Interleaving
• Assume the initial balance is 150

withdraw(100);

Thread 1:

if(getBalance()<75)
 setBalance(75);

Thread 2:

try{
 lk.acquire();
 int b = getBalance();
 if (amount > b)
 throw new Exception();

 setBalance(b – amount); }
 finally { lk.release(); }

if(getBalance() < 75)
 setBalance(75);

What’s wrong here…
class BankAccount {

 private int balance = 0;

 private Lock lck = new Lock();

 int setBalance(int x) {

 try{

 lk.acquire();

 balance = x; }

 finally{ lk.release(); } }

 void withdraw(int amount) {

 try{

 lk.acquire();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 finally { lk.release(); } }}

Withdraw calls setBalance!

Withdraw can never finish because in
setBalance the lock will always be held!

Re-entrant Lock (Recursive Lock)

• Idea:
• Once a thread has acquired a lock, future calls to acquire on the same lock

will not block progress

• If the lock used in the previous slide is re-entrant, then it will work!

Re-entrant Lock Details

• A re-entrant lock (a.k.a. recursive lock)

• “Remembers”
• the thread (if any) that currently holds it
• a count of “layers” that the thread holds it

• When the lock goes from not-held to held, the count is set to 0

• If (code running in) the current holder calls acquire:
• it does not block
• it increments the count

• On release:
• if the count is > 0, the count is decremented
• if the count is 0, the lock becomes not-held

Java’s Re-entract Lock Class

• java.util.concurrent.locks.ReentrantLock

• Has methods lock() and unlock()

• Important to guarantee that lock is always released!!!

• Recommend something like this:
myLock.lock();

try { // method body }

finally { myLock.unlock(); }

How this looks in Java
java.util.concurrent.locks.ReentrantLock;

class BankAccount {

 private int balance = 0;

 private ReentrantLock lck = new ReentrantLock();

 int setBalance(int x) {

 try{

 lk.lock();

 balance = x; }

 finally{ lk.unlock(); } }

 void withdraw(int amount) {

 try{

 lk.lock();

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 finally { lk.unlock(); } }}

Java Synchronized Keyword

• Syntactic sugar for re-etrant locks

• You can use the synchronized statement as an alternative to declaring a
ReentrantLock

• Syntax:

• Any Object can serve as a “lock”
• Primitive types (e.g. int) cannot serve as a lock

• Acquires a lock and blocks if necessary
• Once you get past the “{“, you have the lock

• Released the lock when you pass “}”
• Even in the cases of returning, exceptions, anything!
• Impossible to forget to release the lock

synchronized(/* expression returning an Object */) {statements}

Back Account Using Synchronize (Attempt 1)
class BankAccount {

 private int balance = 0;

 private Object lk = new Object();

 int getBalance() {

 synchronized (lk) { return balance; }

 }

 void setBalance(int x) {

 synchronized (lk) { balance = x; }

 }

 void withdraw(int amount) {

 synchronized (lk) {

 int b = getBalance();

 if (amount > b)

 throw new Exception();

 setBalance(b – amount); } } // deposit would also use synchronized(lk)

}

Back Account Using Synchronize (Attempt 2)
class BankAccount {

 private int balance = 0;

 int getBalance() {

 synchronized (this) { return balance; }

 }

 void setBalance(int x) {

 synchronized (this) { balance = x; }

 }

 void withdraw(int amount) {

 synchronized (this) {

 int b = getBalance();

 if (amount > b)

 throw new Exception();

 setBalance(b – amount); } } // deposit would also use synchronized(lk)

}

Since we have one lock per account regardless
of operation, it’s more intuitive to use the
account object itself as the lock!

More Syntactic Sugar!

• Using the object itself as a lock is common enough that Java has
convenient syntax for that as well!

• Declaring a method as “synchronized” puts its body into a
synchronized block with “this” as the lock

Back Account Using Synchronize (Final)
class BankAccount {

 private int balance = 0;

 synchronized int getBalance() { return balance; }

 synchronized void setBalance(int x) { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 // other operations like deposit (which would use synchronized)

}

	Slide 1: CSE 332 Autumn 2023 Lecture 24: Concurrency
	Slide 2: Reasons to use threads (beyond algorithms)
	Slide 3: Memory Sharing With ForkJoin
	Slide 4: Example: Shared Queue
	Slide 5: Concurrent Programming
	Slide 6: Bank Account Example
	Slide 7: Bank Account Example - Parallel
	Slide 8: Interleaving
	Slide 9: A “Good” Interleaving
	Slide 10: A “Bad” Interleaving
	Slide 11: Another result?
	Slide 12: A Bad Fix
	Slide 13: A still “Bad” Interleaving
	Slide 14: What we want – Mutual Exclusion
	Slide 15: A Bad attempt at Mutual Exclusion
	Slide 16: A still “Bad” Interleaving
	Slide 17: Solution
	Slide 18: Almost Correct Bank Account Example
	Slide 19: Try…Finally
	Slide 20: Correct (but not Java) Bank Account Example
	Slide 21: A still “Bad” Interleaving
	Slide 22: What’s wrong here…
	Slide 23: Re-entrant Lock (Recursive Lock)
	Slide 24: Re-entrant Lock Details
	Slide 25: Java’s Re-entract Lock Class
	Slide 26: How this looks in Java
	Slide 27: Java Synchronized Keyword
	Slide 28: Back Account Using Synchronize (Attempt 1)
	Slide 29: Back Account Using Synchronize (Attempt 2)
	Slide 30: More Syntactic Sugar!
	Slide 31: Back Account Using Synchronize (Final)

