Lr) - Ao

CSE 332 Autumn 2023
Lecture 28: P and NP

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

/ Bridges of Konigsberg

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among
these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path
starting at one landmass which crosses each bridge exactly once?

N
Euler Path, Problem by

* A sequence of nodes v4, v,, .. such that for every consecutive pair are
connected by an edge (i.e. (v;, V;41) is an edge for each i in the path)

-{ Euler Pat?:
; such that every edge in the graph appears exactly once
* If the graph is not simple then some p eed to appear multiple times!

+ Euler path problem: A ed e

* Given an undirected graph G = (V, E), does there exist an Euler path for G?
undirecte
2 (j & DZ_ N o df
o ddd & & “cc

Examples

* Which of the graphs below have an Euler path?

Euler path exists!
No Euler path exists! &A, B,D,AC,D Euler path exists!

AB,C,D,AC,B,D

Fuler’s Theorem &DO é %

* A graph has an Euler Path if and only if it is @nd has exactly
MOGES w#ﬁ’oadﬂegree \ T/
B

D

Algorithm for the Euler Path Problem

* Given an undirected graph G = (V, E), does there exist an Euler path
for G?

e Algorithm: E
* Check if the graph is connected V%'

* Check the degree of each node v 7/—/
* |f the number of nodes with odd degree is 0 or 2, return true [/
* Otherwise return false 4

* Running time?

(L FE)

A Seemingly Similar Problem
N\ /

« Hamiltonian Path: ()/ =)

* A path that includ@ the graph exactly once

 Hamiltonian Path Problem:
* Given a graph G = (V, E), does that graph have a Hamiltonian Pjy

Truel
AB,C,E,G H,F,D

Algorithms for the Hamiltonian Path Problem

* Option 1:
* Explore all possible simple paths through the graph
* Check to-see if any of tIT(Ts’ea?e/Iength V&

* Option 2:
* Write down every sequence\of nodes

* Check to see if any of those are a path
are

* Both options are examples of an Exhaustive Search (“Brute Force”)
algorithm

Option 2: t/all sequences, look for a path

. Running time: {/ (//’
ber o %
Number of permutations of V@

ﬁ"—n n—1-(n- 2)

* How do I compare W|t

°LExponent|aI running time!
- J

Option 1: Explore all simple paths, check for

one of length V B
. Runningtim_e_:/’ \/ /V/ /)/Z/

¢ =(V,E)
°Ll\l/umber of pathsx

* Pick afirst node (|V| choices)
* Pick %Eggzﬁ(up to |V| — 1 choices)
* Pick a neighbor (up to |V| — 2 choices)
* ... Repeat J/Z| — 1 total times (~—_
. Overal@_gﬁat?s/
* Exponential running time

o — ~ oL

R u n n | ng T m eS Running times we’ve seen:
« 0(D)

| _—~+0(logn)

* O(nlogn)

« O0(n?)

« 02"

]
Operations
p 7 é = </

Input Size

Running Times

Table 2.1 The running times (rounded up) of different algorithms /on inputs of

increasing size, for a processor performing a million high-level instrucfions per second.

In cases where the running time exceeds 10%° years, we simply record the algorithm as
ing a very long time.

. i —L
___ > = Qlog2 n n? n’ 1.5" (2") ﬁ!)
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec
n= < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec
E% < 1 sec < 1 sec < 1 sec < 1 sec 11 min
n=100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years very long
n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
} n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
(/ n= },000,000 | 1 sec . 20 sec | 12 days 31,710 years very long very long very long

= =5

/&

Tecdbity, 7,
* Tractable: 7 \)

. @lble to solve in the “real world J 7\

wa:ﬂe:

* Infeasible to solve in the “real world”

 Whether a problem is considered “tractable” or “intractable” depends on
the use case

* Forymachine learning, big data,etc. tractable might mea;z— O(n) Dnr everyO(logn)
. FOWWI@ 0(n3) or 0(n?)

* A strange pattern: ~’\/
. Mostproblems ither done in small-degree polynomial (e.g.n?)or

else exponential time (e.g. —J
* It’s rare to have problems which require a running time@for example

Complexity Classesj

c A ﬁ?rrrr\p\leﬁt_y Clasga set of problemsje.g. sorting, Euler path,

Hamiltonianpath) A
e The ms included in a complexity class are those whos%&stmy
algorithm has a specific upper bound on its running time (or memory use, or...)
* Examples:

* The set of all problems that can be solved by an algorithm with running tim@

* Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a

list, etc. —_—
* The set of all problems that can be solved by an algorithm with running time’0 (n?)
* Contains: everything above as well as sorting, Euler path

>
* The set of all problems that can be solved by an algorithm with running time@(n!) J

* Contains: everything we’ve seen in this class so far /7

\

* To explore what problems are and are not tractable, we give some

complexity classes special names:
* Complexity CIass{B: 3

/ .
* Stands for] “Polynomial”
* The set of problems which have an algorithm whose running time is O (n?) for some

. Complexity Classei and Tractability

choiceofp ER. S N
* We say all problems belonging t@re “Tractable”

|H

e Stands for “Exponentia
* The set of problems which have an algorithm whose running time i@

some choice of p € R

* We say all problems belonging to EXP Z’Olj?r ”Intractaﬁblc’ez
« Disclaimer: Really it’s all problems outsid P, and there are preblems which do not belong

to EXP, but we’re not going to worry about those in this class

* Complexity Class)EXP;: d
e P
""Y for

Important!
P c EXP

EXP a N d P Every problem within P is also within EXP

The intractable ones are the problems within EXP but NOT P

— p
Polynomial
Upper bounded by n?

Tractable

Important!
Some of the problems listed in EXP could also be members of P
I\/I em b ers Since membership is determined by a problems most efficient
algorithm, knowing if a problem belongs to P requires knowing
the best algorithm possible!

Sorting
Shortest Path
Euler Path

Tractable

Studying Complexity and Tractability

* Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

* The goal for each problem is to either
* Find an efficient algorithm if it exists
* j.e.show it belongsto P

* Prove that no efficient algorithm exists
* j.e. show it does not belong to P

* Complexity classes allow us to reason about sets of problems at a
time, rather than each problem individually

* |f we can find more precise classes to organize problems into, we might be
able to draw conclusions about the entire class

* |t may be easier to show a problem belongs to class C than to P, so it may
help to show that C € P

Some problems in EXP seem “easier”

* There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

e Hamiltonian Path:

* |t's “hard” to look at a graph and determine whether it has a Hamiltonian
Path

* |t's “easy” to look at a graph and a candidate path together and determine
whether THAT path is a Hamiltonian Path

* It’s easy to verify whether a given path is a Hamiltonian path

Class NP

NP
* The set of problems for which a candidate solution can be verified in
polynomial time

 Stands for “Non-deterministic Polynomial”

» Corresponds to algorithms that can guess a solution (if it exists), that solution is then
verified to be correct in polynomial time

* Can also think of as allowing a special operation that allows the algorithm to magically
guess the right choice at each step of an exhaustive search

*PC NP
* Why?

EXPODONP2OP

NP

Nondeterministic Polynomial
P Verified in n? time
Polynomial

Upper bounded by nP

....
....
L 4

L2
...
Y
L2

Solving and Verifying Hamiltonian Path

* Give an algorithm to solve Hamiltonian Path
* Input: ¢ = (V,E)
e Output: True if ¢ has a Hamiltonian Path

e Algorithm: Check whether each permutation of V is a path.
* Running time: |V|!, so does not show whether it belongs to P

* Give an algorithm to verify Hamiltonian Path
* Input: ¢ = (V, E) and a sequence of nodes
e Output: True if that sequence of nodes is a Hamiltonian Path
e Algorithm:
* Check that each node appears in the sequence exactly once

* Check that the sequence is a path
* Runningtime: O(V - E), so it belongs to NP

Party Problem

| \ Draw Edges between people who don’t get along
7. How many people can | invite to a party if everyone must get along?
. | v

23

Independent Set

* Independent set:
« § € Visanindependent set if no two nodes in S share an edge

* Independent Set Problem:

* Given a graph G = (V, E) and a number k, determine whether there is an
independent set S of size k

Independent set of size 6

25

Solving and Veritying Independent Set

* Give an algorithm to solve independent set
* Input: ¢ = (V,E) and a number k
e Qutput: True if G has an independent set of size k

* Give an algorithm to verify independent set
* Input: G = (V,E),anumber k,andasetS SV
e Output: True if S is an independent set of size k

Generalized Baseball

Generalized Baseball

Need to place defenders on bases

such that every edge is defended
How many defenders would suffice?

/

Vertex Cover

* Vertex Cover:
« C € Visavertex cover if every edge in E has one of its endpoints in C

e \Vertex Cover Problem:

* Given a graph G = (V,E) and a number k, determine if there is a vertex
cover C of size k

Example

Vertex cover of size 5

30

Solving and Verifying Vertex Cover

* Give an algorithm to solve vertex cover
* Input: ¢ = (V,E) and a number k
e Output: True if G has a vertex cover of size k

* Give an algorithm to verify vertex cover
* Input: ¢ = (V,E),anumberk,andasetS C E
e Output: True if S is a vertex cover of size k

	Slide 1: CSE 332 Autumn 2023 Lecture 28: P and NP
	Slide 2: 7 Bridges of Königsberg
	Slide 3: Euler Path Problem
	Slide 4: Examples
	Slide 5: Euler’s Theorem
	Slide 6: Algorithm for the Euler Path Problem
	Slide 7: A Seemingly Similar Problem
	Slide 8: Algorithms for the Hamiltonian Path Problem
	Slide 9: Option 2: List all sequences, look for a path
	Slide 10: Option 1: Explore all simple paths, check for one of length cap V
	Slide 11: Running Times
	Slide 12: Running Times
	Slide 13: Tractability
	Slide 14: Complexity Classes
	Slide 15: Complexity Classes and Tractability
	Slide 16: cap E cap X cap P and cap P
	Slide 17: Members
	Slide 18: Studying Complexity and Tractability
	Slide 19: Some problems in cap E cap X cap P seem “easier”
	Slide 20: Class cap N cap P
	Slide 21: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 22: Solving and Verifying Hamiltonian Path
	Slide 23: Party Problem
	Slide 24: Independent Set
	Slide 25: Example
	Slide 26: Solving and Verifying Independent Set
	Slide 27: Generalized Baseball
	Slide 28: Generalized Baseball
	Slide 29: Vertex Cover
	Slide 30: Example
	Slide 31: Solving and Verifying Vertex Cover

