
CSE 332 Autumn 2023
Lecture 6: Priority Queues 2

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Warm Up!

• What is the maximum number of total nodes in a binary tree of
height ℎ?
• Height: The number of edges in the path from root to the deepest leaf

• If I have 𝑛 nodes in a binary tree, what is the its minimum height?

Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right

1

3 2

4 7 5 6

5 9

Tree T

ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• Usually, smaller priority value means more important

• deleteMin
• Remove and return the “top priority” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Circular Array Θ 𝑛 Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 1

Binary Heap Θ log 𝑛 Θ log 𝑛

Note: Assume we know the maximum size of the PQ in advance

Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be
perfectly sorted

• Θ(log 𝑛) worst case for deleteMin and insert
1

3 2

4 7 5 6

5 9

Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be
perfectly sorted

• Θ(log 𝑛) worst case for deleteMin and insert
1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

Challenge!

• What is the maximum number of total nodes in a binary tree of
height ℎ?
• 2ℎ+1 − 1

• Θ 2ℎ

• If I have 𝑛 nodes in a binary tree, what is its minimum height?
• Θ log 𝑛

• Heap Idea:
• If 𝑛 values are inserted into a complete tree, the height will be roughly log 𝑛

• Ensure each insert and deleteMin requires just one “trip” from root to leaf

Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority

• Where is the min?

• How do I insert?

• How do I deleteMin?

• How to do it in Java?

1

3 2

4 7 5 6

5 9

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

3 2

4 7 5 6

5 9

1.5

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

3 2

4 7 5 6

5 9 1.5

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

3 2

4 1.5 5 6

5 9 7

Percolate Up

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Percolate Up

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

7 2

4 3 5 6

5 9

Percolate Down

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

3 2

4 7 5 6

5 9

Percolate Down

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

3 2

4 7 5 6

5 9

Percolate Up and Down

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛

Representing a Heap

• Every complete binary tree with the same
number of nodes uses the same positions
and edges

• Use an array to represent the heap

• Index of root:

• Parent of node 𝑖:

• Left child of node 𝑖:

• Right child of node 𝑖:

• Location of the leaves:

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9

Insert Psuedocode

insert(item){

 if(size == arr.length – 1){resize();}

 size++;

 arr[i] = item;

 percolateUp(i)

}

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9 10

Percolate Up

percolateUp(i){
 parent = i/2; \\ index of parent
 val = arr[i]; \\ value at location
 while(i > 1 && arr[i] < arr[parent]){ \\ until location is root or heap property holds
 arr[i] = arr[parent]; \\ move parent value to this location
 arr[parent] = val; \\ put current value into parent’s location
 i = parent; \\ make current location the parent
 parent = i/2; \\ update new parent
 }
}

DeleteMin Psuedocode

deleteMin(){

 theMin = arr[1];

 arr[1] = arr[size];

 size--;

 percolateDown(1);

 return theMin;

}

Percolate Down
percolateDown(i){

 left = i*2; \\ index of left child

 right = i*2+1; \\ index of right child

 val = arr[i]; \\ value at location

 while(left <= size){ \\ until location is leaf

 toSwap = right;

 if(right > size || arr[left] < arr[right]){ \\ if there is no right child or if left child is smaller

 toSwap = left; \\ swap with left

 } \\ now toSwap has the smaller of left/right, or left if right does not exist

 if (arr[toSwap]< val){ \\ if the smaller child is less than the current value

 arr[i] = arr[toSwap];

 arr[toSwap] = val; \\ swap parent with smaller child

 i = toSwap; \\ update current node to be smaller child

 left = i*2;

 right = i*2+1;

 }

 else{ break;} \\ if we don’t swap, then heal property holds

 }

}

Other Operations

• Increase Key
• Given the index of an item in the PQ, subtract from its priority value

• Decrease Key
• Given the index of an item in the PQ, add to its priority value

• Remove
• Given the item at the given index from the PQ

Aside: Expected Running time of Insert

Building a Heap From “Scratch”

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down

Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 1 8 7

14 2

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

2 1 8 7

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 7

2 1 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

1 7

2 6 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

1

2 7

3 6 8 10

14 5

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

How long did this take?

• Worst case running time of buildHeap:

• No node can percolate down more than the height of its subtree
• When i is a leaf:

• When i is second-from-last level:

• When i is third-from-last level:

• Overall Running time:

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

	Slide 1: CSE 332 Autumn 2023 Lecture 6: Priority Queues 2
	Slide 2: Warm Up!
	Slide 3: Trees for Heaps
	Slide 4: ADT: Priority Queue
	Slide 5: Thinking through implementations
	Slide 6: Heap – Priority Queue Data Structure
	Slide 7: Heap – Priority Queue Data Structure
	Slide 8: Challenge!
	Slide 9: Heap Data Structure
	Slide 10: Heap Insert
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap deleteMin
	Slide 16: Heap deleteMin
	Slide 17: Heap deleteMin
	Slide 18: Heap deleteMin
	Slide 19: Heap deleteMin
	Slide 20: Percolate Up and Down
	Slide 21: Representing a Heap
	Slide 22: Insert Psuedocode
	Slide 23: Percolate Up
	Slide 24: DeleteMin Psuedocode
	Slide 25: Percolate Down
	Slide 26: Other Operations
	Slide 27: Aside: Expected Running time of Insert
	Slide 28: Building a Heap From “Scratch”
	Slide 29: Floyd’s buildHeap method
	Slide 30: Floyd’s buildHeap method
	Slide 31: Floyd’s buildHeap method
	Slide 32: Floyd’s buildHeap method
	Slide 33: Floyd’s buildHeap method
	Slide 34: Floyd’s buildHeap method
	Slide 35: Floyd’s buildHeap method
	Slide 36: How long did this take?

