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Warm Up!

• What is the maximum number of total nodes in a binary tree of 
height ℎ?
• Height: The number of edges in the path from root to the deepest leaf

• If I have 𝑛 nodes in a binary tree, what is the its minimum height?



Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right
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ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• Usually, smaller priority value means more important

• deleteMin
• Remove and return the “top priority” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable 
(i.e. you can use “<“ or “compareTo” with it)



Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Circular Array Θ 𝑛 Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 1

Binary Heap Θ log 𝑛 Θ log 𝑛

Note: Assume we know the maximum size of the PQ in advance



Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be 
perfectly sorted

• Θ(log 𝑛) worst case for deleteMin and insert
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Challenge!

• What is the maximum number of total nodes in a binary tree of 
height ℎ?
• 2ℎ+1 − 1

• Θ 2ℎ

• If I have 𝑛 nodes in a binary tree, what is its minimum height?
• Θ log 𝑛

• Heap Idea:
• If 𝑛 values are inserted into a complete tree, the height will be roughly log 𝑛

• Ensure each insert and deleteMin requires just one “trip” from root to leaf



Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority

• Where is the min?

• How do I insert?

• How do I deleteMin?

• How to do it in Java?
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Heap Insert

insert(item){

    put item in the “next open” spot (keep tree complete)

    while (item.priority < parent(item).priority){

        swap item with parent

    }

}
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Heap Insert

insert(item){

    put item in the “next open” spot (keep tree complete)

    while (item.priority < parent(item).priority){
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Heap Insert

insert(item){

    put item in the “next open” spot (keep tree complete)

    while (item.priority < parent(item).priority){

        swap item with parent

    }

}
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Heap Insert

insert(item){

    put item in the “next open” spot (keep tree complete)

    while (item.priority < parent(item).priority){

        swap item with parent

    }

}
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Heap Insert

insert(item){

    put item in the “next open” spot (keep tree complete)

    while (item.priority < parent(item).priority){

        swap item with parent

    }

}
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Heap deleteMin

deleteMin(){

    min = root

    br = bottom-right item

    move br to the root

   while(br > either of its children){

    swap br with its smallest child

    }

    return min

}

1

1.5 2

4 3 5 6

5 9 7



Heap deleteMin

deleteMin(){

    min = root

    br = bottom-right item

    move br to the root
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Heap deleteMin

deleteMin(){

    min = root

    br = bottom-right item

    move br to the root

   while(br > either of its children){

    swap br with its smallest child

    }

    return min

}
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Heap deleteMin

deleteMin(){

    min = root

    br = bottom-right item

    move br to the root

   while(br > either of its children){

    swap br with its smallest child

    }

    return min

}
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Heap deleteMin

deleteMin(){

    min = root

    br = bottom-right item

    move br to the root

   while(br > either of its children){

    swap br with its smallest child

    }

    return min

}
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Percolate Up and Down

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent 

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with 

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛



Representing a Heap

• Every complete binary tree with the same 
number of nodes uses the same positions 
and edges

• Use an array to represent the heap

• Index of root: 

• Parent of node 𝑖:

• Left child of node 𝑖:

• Right child of node 𝑖:

• Location of the leaves: 

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9



Insert Psuedocode

insert(item){

    if(size == arr.length – 1){resize();}

    size++;

    arr[i] = item;

    percolateUp(i)

} 
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Percolate Up

percolateUp(i){
    parent = i/2;  \\ index of parent
    val = arr[i];  \\ value at location
    while(i > 1 && arr[i] < arr[parent]){  \\ until location is root or heap property holds
        arr[i] = arr[parent];  \\ move parent value to this location
        arr[parent] = val; \\ put current value into parent’s location 
        i = parent;  \\ make current location the parent
        parent = i/2;  \\ update new parent
    }
}



DeleteMin Psuedocode

deleteMin(){

    theMin = arr[1];

    arr[1] = arr[size];

    size--;

    percolateDown(1);

    return theMin;

} 



Percolate Down
percolateDown(i){

    left = i*2;  \\ index of left child

    right = i*2+1;  \\ index of right child

    val = arr[i];  \\ value at location

    while(left <= size){  \\ until location is leaf

        toSwap = right;

        if(right > size || arr[left] < arr[right]){  \\ if there is no right child or if left child is smaller

        toSwap = left;  \\ swap with left

        } \\ now toSwap has the smaller of left/right, or left if right does not exist

        if (arr[toSwap]< val){  \\ if the smaller child is less than the current value

            arr[i] = arr[toSwap];

            arr[toSwap] = val; \\ swap parent with smaller child

            i = toSwap; \\ update current node to be smaller child

            left = i*2;

            right = i*2+1;

        }

        else{ break;} \\ if we don’t swap, then heal property holds

    }

}



Other Operations

• Increase Key
• Given the index of an item in the PQ, subtract from its priority value

• Decrease Key
• Given the index of an item in the PQ, add to its priority value

• Remove
• Given the item at the given index from the PQ



Aside: Expected Running time of Insert



Building a Heap From “Scratch”

• Suppose we had 𝑛 items and wanted to “heapify” them
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Violate Heap Property!

Two ways for “fix” the heap:
1) Percolate Up
2) Percolate Down



Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
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Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them
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buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
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How long did this take?

• Worst case running time of buildHeap:

• No node can percolate down more than the height of its subtree
• When i is a leaf:

• When i is second-from-last level:

• When i is third-from-last level:

• Overall Running time:

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
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