
CSE 332 Autumn 2023
Lecture 7: Priority Queues &

Recurrences
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Circular Array Θ 𝑛 Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 1

Binary Heap Θ log 𝑛 Θ log 𝑛

Note: Assume we know the maximum size of the PQ in advance

Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be
perfectly sorted

• Θ(log 𝑛) worst case for deleteMin and insert
1

3 2

4 7 5 6

5 9

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

1

1.5 2

4 3 5 6

5 9 7

Percolate Up and Down

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛

Representing a Heap
• Every complete binary tree with the same

number of nodes uses the same positions
and edges

• Use an array to represent the heap

• Index of root: 1

• Parent of node 𝑖:
𝑖

2

• Left child of node 𝑖: 2 ⋅ 𝑖

• Right child of node 𝑖: 2 ⋅ 𝑖 + 1

• Location of the leaves: last half

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9

Other Operations

• Increase Key
• Given the index of an item in the PQ, subtract from its priority value

• Update the priority, then percolate [up or down?]

• Decrease Key
• Given the index of an item in the PQ, add to its priority value

• Update the priority, then percolate [up or down?]

• Remove
• Given the item at the given index from the PQ

• Change its priority to −∞

• deleteMin

Building a Heap From “Scratch”

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!

Two ways to “fix” the heap:
1) Percolate Up
2) Percolate Down

Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 15 8 7

14 2

1

2 3

4 65 7

8 9

1

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

3 1 8 7

14 2

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 10

2 1 8 7

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

6 7

2 1 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

5

1 7

2 6 8 10

14 3

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

Floyd’s buildHeap method

• Suppose we had 𝑛 items and wanted to “heapify” them

5 6 10 3 15 8 7 14 2

0 1 2 3 4 5 6 7 8 9

1

10

1

2 7

3 6 8 10

14 5

1

2 3

4 65 7

8 9

15

10

Violate Heap Property!

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

How long did this take?• Worst case running time of buildHeap:

• No node can percolate down more than the height of its subtree
• When i is a leaf: 0
• When i is second-from-last level: 1
• When i is third-from-last level: 2

• Overall Running time:
•

𝑛

2
 of the items are leaves

• 0 swaps total

•
𝑛

4
 of the items are at second-from-last level

•
𝑛

4
 total swaps

•
𝑛

8
 of the items are at third-from-last level

•
𝑛

8
∗ 2 total swaps

•
𝑛

16
∗ 3 total swaps

• This sum converges to 2𝑛 ∈ Θ(𝑛)

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connects to
the beginning (call it pile A, the other pile B)

4. Count the number of strands crossing the piles

5. If the count is even, pile A contains the end, else pile B does

Repeat on
pile with end

A
B

18

Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done at that step

• Usually:

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer”

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”

How Efficient Is It?

• 𝑇 𝑛 = 𝑐𝑜𝑢𝑛𝑡(𝑛) + 𝑇
𝑛

2

• 𝑇 𝑛 = 5 + 𝑇
𝑛

2

• Base case: 𝑇 1 = 5

𝑇 𝑛 = “cost” of running the
entire algorithm on an 𝑛 inch string

𝑐𝑜𝑢𝑛𝑡 𝑛 = “cost” of
counting the crossing strands
(I arbitrarily picked 5)

20

Let’s Solve the Recurrence!

𝑇 𝑛 = 5 + 𝑇(ൗ𝑛
2)

𝑇 1 = 5

5 + 𝑇(ൗ𝑛
4)

5 + 𝑇(ൗ𝑛
8)

5

⌈log2 𝑛⌉

𝑇 𝑛 =

𝑖=1

⌈log2𝑛⌉

5 = 5 ⌈log2 𝑛⌉ 𝑇 𝑛 ∈ Θ log 𝑛

21

Recursive Linear Search

search(value, list){
 if(list.isEmpty()){
 return false;
 {
 if (value == list[0]){
 return true;
 }
 list.remove(0);
 return search(value, list);
}

Unrolling Method

• Repeatedly substitute the recursive part of the recurrence

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

• 𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

• 𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

• …

• 𝑇 𝑛 = 𝑐 + 𝑐 + 𝑐 + ⋯ + 𝑐
• How many 𝑐’s?

Recursive List Summation

sum(list){

 return sum_helper(list, 0, list.size);

}

sum_helper(list, low, high){

 if (low == high){ return 0; }

 if (low == high-1){ return list[low]; }

 middle = (high+low)/2;

 return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}

Tree Method

 2𝑖 ⋅ 𝑐 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑐

𝑇 𝑛 =

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐

𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Recursive List Summation

𝑇 𝑛 =

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

= 𝑐 ⋅

𝑖=1

log2 𝑛

2𝑖

= 𝑐
1 − 2log2 𝑛

1 − 2

Binary Search

search(value, sortedArr){
 return helper(value, sortedArr, 0, sortedArr.length);
}
helper(value, arr, low, high){
 if (low == high){ return false; }
 mid = (high + low) / 2;
 if (arr[mid] == value){ return true; }
 if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
 else { return helper(value, arr, low, mid); }
}

	Slide 1: CSE 332 Autumn 2023 Lecture 7: Priority Queues & Recurrences
	Slide 2: Thinking through implementations
	Slide 3: Heap – Priority Queue Data Structure
	Slide 4: Heap Insert
	Slide 5: Heap deleteMin
	Slide 6: Percolate Up and Down
	Slide 7: Representing a Heap
	Slide 8: Other Operations
	Slide 9: Building a Heap From “Scratch”
	Slide 10: Floyd’s buildHeap method
	Slide 11: Floyd’s buildHeap method
	Slide 12: Floyd’s buildHeap method
	Slide 13: Floyd’s buildHeap method
	Slide 14: Floyd’s buildHeap method
	Slide 15: Floyd’s buildHeap method
	Slide 16: Floyd’s buildHeap method
	Slide 17: How long did this take?
	Slide 18: End-of-Yarn Finding
	Slide 19: Analysis of Recursive Algorithms
	Slide 20: How Efficient Is It?
	Slide 21: Let’s Solve the Recurrence!
	Slide 22: Recursive Linear Search
	Slide 23: Unrolling Method
	Slide 24: Recursive List Summation
	Slide 25: Tree Method
	Slide 26: Recursive List Summation
	Slide 27: Binary Search

