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Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)



Less Naïve attempts

• Binary Search Trees (Friday)

• Tries (Project)

• AVL Trees (Today)

• B-Trees (this week)

• HashTables (next week)

• Red-Black Trees (not included in this course)

• Splay Trees (not included in this course)



Dictionary Data Structures

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)



Binary Search Tree

• Binary Tree
• Definition: 

• Every node has at most 2 children

• Order Property
• All keys in the left subtree are smaller than the root

• All keys in the right subtree are larger than the root

• Apply recursively

• Why?
• Makes searching quicker

• Worst case: tree’s height
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Find Operation (recursive)
find(key, root){

 if (root == Null){

  return Null;

 {

 if (key == root.key){

  return root.value;

 }

 if (key < root.key){

  return find(key, root.left);

 }

 if (key > root.key){

  return find(key, root.right);

 } 

 return Null;

}
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Find Operation (iterative)
find(key, root){

 while (root != Null && key != root.key){

  if (key < root.key){

   root = root.left;

  }

  else if (key > root.key){

   root = root.right;

  }

 }

 if (root == Null){

  return Null;

 }

 return root.value;

}
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Insert Operation (iterative)
insert(key, value, root){

 if (root == Null){ this.root = new Node(key, value); }

 parent = Null;

 while (root != Null && key != root.key){

  parent = root;

  if (key < root.key){ root = root.left; }

  else if (key > root.key){ root = root.right; }

 }

 if (root != Null){ root.value = value; }

 else if (key < parent.key){ parent.left = new Node(key, value); }

 else{ parent.right = new Node (key, value); }

}
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Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

  if (key < root.key){ root = root.left; }

  else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 // Now root is the node to delete, what happens next? 

}
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Delete – 3 Cases

• 0 Children (i.e. it’s a leaf)

• 1 Child

• 2 Children
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Finding the Max and Min

• Max of a BST:
• Right-most Thing

• Min of a BST:
• Left-most Thing
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maxNode(root){
 if (root == Null){ return Null; }
 while (root.right != Null){
  root = root.right;
 }
 return root;
}

minNode(root){
 if (root == Null){ return Null; }
 while (root.left != Null){
  root = root.left;
 }
 return root;
}



Delete Operation (iterative)
delete(key, root){

 while (root != Null && key != root.key){

  if (key < root.key){ root = root.left; }

  else if (key > root.key){ root = root.right; }

 }

 if (root == Null){ return; }

 if (root has no children){

  make parent point to Null Instead;

 }

 if (root has one child){

  make parent point to that child instead;

 }

 if (root has two children){

  make parent point to either the max from the left or min from the right

 }

}
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Improving the worst case

• How can we get a better worst case running time?



“Balanced” Binary Search Trees

• We get better running times by having “shorter” trees

• Trees get tall due to them being “sparse” (many one-child nodes)

• Idea: modify how we insert/delete to keep the tree more “full”



Idea 1: Both Subtrees of Root have same # 
Nodes



Idea 2: Both Subtrees of Root have same 
height



Idea 3: Both Subtrees of every Node have 
same # Nodes



Idea 4: Both Subtrees of every Node have 
same height



AVL Tree

• A Binary Search tree that maintains that the left and right subtrees of 
every node have heights that differ by at most one.
• height of left subtree and height of right subtree off by at most 1

• Not too weak (ensures trees are short)

• Not too strong (works for any number of nodes)

• Idea of AVL Tree:
• When you insert/delete nodes, if tree is “out of balance” then modify the tree

• Modification = “rotation”



Is it an AVL Tree?
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Using AVL Trees

• Each node has:
• Key

• Value

• Height

• Left child

• Right child
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Key = 9
Value = “hello”

Height = 3
Left = Node 3

Right = Node 10



Inserting into an AVL Tree

• Starts out the same way as BST:
• “Find” where the new node should go

• Put it in the right place (it will be a leaf)

• Next check the balance
• If the tree is still balanced, you’re done!

• Otherwise we need to do rotations



Insert Example 18

9

3 10

1 16

0

6

2 7



Insert Example
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Not Balanced!

-1

Height = 3 Height = 1

Solution: rotate the whole tree to the right
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Balanced!
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Right Rotation

• Make the left child the new root

• Make the old root the right child of the new

• Make the new root’s right subtree the old root’s left subtree
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Insert Example 20
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Not Balanced!

Height = 2
Height = 3

Solution: rotate the deepest imbalance to the left
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Balanced!
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Left Rotation

• Make the right child the new root

• Make the old root the left child of the new

• Make the new root’s left subtree the old root’s right subtree
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Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for imbalance

• If there’s imbalance then at the deepest root of imbalance:
• If the left subtree was deeper then rotate right

• If the right subtree was deeper then rotate left

This is incomplete!
There are some cases 
where this doesn’t work!
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Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for imbalance

• If there’s imbalance then at the deepest root of imbalance:
• Case LL: If we inserted in the left subtree of the left child then rotate right

• Case RR: If we inserted in the right subtree of the right child then rotate left

• Case LR: If we inserted into the right subtree of the left child then ???

• Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 
rotations!



Case LR 

• From “root” of the deepest imbalance:
• Rotate left at the left child

• Rotate right at the root
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Case LR in General

• Imbalance caused by inserting in the left child’s right subtree

• Rotate left at the left child

• Rotate right at the imbalanced node
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Case RL in General

• Imbalance caused by inserting in the right child’s left subtree

• Rotate right at the right child

• Rotate left at the imbalanced node
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Insert Summary

• After a BST insertion, update the heights of the node’s ancestors

• Check for imbalance

• If there’s imbalance then at the deepest root of imbalance:
• Case LL: If we inserted in the left subtree of the left child then: rotate right

• Case RR: If we inserted in the right subtree of the right child then: rotate left

• Case LR: If we inserted into the right subtree of the left child then: rotate left 
at the left child and then rotate right at the root

• Case RL: If we inserted into the left subtree of the right child then: rotate 
right at the right child and then rotate left at the root
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