
University of Washington CSE 332 26 February 2024

Final Exam
Autumn 2023

Name Answer Key

Net ID

Academic Integrity: You may not use any resources on this exam except for writing
instruments, your own brain, and the exam packet itself. This exam is closed notes, closed
neighbor, closed electronic devices, etc.. The last two pages of this exam provide a list of
potentially helpful identities as well as room for scratch work (respectively). No markings
on these last two pages will be graded. Your answer for each question must fit in the answer
box provided.

Instructions: Before you begin, Put your name and UW Net ID at the top of this
page. Make sure that your name and ID are LEGIBLE. Please ensure that all of your
answers appear within the boxed area provided.

Section Max Points
Asymptotic Analysis 12

Pre-Midterm Data Structures 12
Hash Tables 12

Sorting 10
Graphs 20

Parallelism 12
Concurrency 12

P vs NP 5
Extra Credit (+2)

Total 95

CSE 332 2 Final Exam

Section 1: Asymptotic Analysis
(4 pts)Question 1: Asymptotic Analysis of Code
Give a simplified Θ bound on the best and worst case running times for the given code. (By simplified we
mean it should contain no constant coefficients or non-dominant terms.) You should assume that no strings
in the input list are null.
int doStuff(List<Integer> numbers){

int n = numbers.size();
int[] myList = {1,2,3,4};
int i = 0;
while(i < n){

for (int j = 0; j < myList.length; j++){
if(numbers[i] == myList[j]){

i += n/2;
}

}
i++;

}
return i;

}

(a) Best Case: Θ(1)

(b) Worst Case: Θ(n)

(8 pts)Question 2: Which is larger?
For each pair of functions f(n) and g(n) below, select the choice which best characterizes the asymptotic
relationship between f and g. Write the letter corresponding with your answer in the box provided.

1. f(n) = n, g(n) = log2(n)

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

2. f(n) = log2(n3), g(n) = log5(n5)

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

3. f(n) = 2f(n/2) + n, g(n) = n2

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

4. f(n) = f(n − 1) + 1, g(n) = g(n/2) + n

A. f(n) ∈ Θ(g(n))
B. f(n) ∈ O(g(n)) and f(n) /∈ Θ(g(n))
C. f(n) ∈ Ω(g(n)) and f(n) /∈ Θ(g(n))

C

A

B

A

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 3 Final Exam

Section 2: Pre-Midterm Data Structures
(4 pts)Question 3: Heap
The array given below does not currently satisfy the heap property for a binary minheap, but calling
percolate up/down on one item would result in a valid binary minheap.

The empty space below is available if you would like to draw the heap as a binary tree. This drawing is
optional and it will not be graded.

1. Give the index such that, if we called percolate up on that index, the result would be a valid heap.

4

2. Give the index such that, if we called percolate down on that index, the result would be a valid heap.

1

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 4 Final Exam

(4 pts)Question 4: AVL Tree
Answer the following questions about the AVL Tree below. Each question should be considered completely
independently (i.e. "reset" to the image between questions).

1. Give an integer key which, when inserted into the given AVL tree, would cause a double rotation.

3

2. Give an integer key which, when inserted into the original AVL tree given above, would cause a single

rotation. 5

(4 pts)Question 5: B Tree
Suppose we had a B Tree with L = 20 and M = 10 that has height 2. (Recall that we define height to be
the maximum number of edges between the root and a leaf)

1. What is the minimum number of items in the data structure?

100

2. What is the maximum number of items in the data structure?

2000

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 5 Final Exam

Section 3: Hash Tables
(4 pts)Question 6: Load Factor
In 1-2 sentences, explain why, regardless of probing strategy, an open addressing hash table must be
rehashed before its load factor exceeds 1.

A fully associative hash table cannot have a load factor greater than 1 because there cannot
be more than 1 item stored at each index.

(4 pts)Question 7: Quadratic Probing
Insert 7, 66, 82, 67, 39, 10, 28 (in that order) into the open addressing hash table below. You should use the
primary hash function h(k) = k%10. In the case of collisions, use quadratic probing for collision resolution.
If an item cannot be inserted into the table, please indicate this and continue inserting the remaining values.

Items that could not be inserted:

0 10

1

2 82

3

4 28

5

6 66

7 7

8 67

9 39

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 6 Final Exam

(4 pts)Question 8: Double Hashing
Insert 7, 66, 82, 67, 39, 10, 28 (in that order) into the open addressing hash table below. You should use
the primary hash function h(k) = k%10. In the case of collisions, use double hashing for collision resolution
where the secondary hash function is g(k) = 1 + (k%3). If an item cannot be inserted into the table, please
indicate this and continue inserting the remaining values.

Items that could not be inserted:

0 39

1

2 82

3

4 10

5

6 66

7 7

8 28

9 67

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 7 Final Exam

Section 4: Sorting
(4 pts)Question 9: Sort Suggestions Hotline
Suppose you are responsible for a phone-in service where people call in, describe the items they need to
sort, and you recommend an algorithm for them to use. For each scenario described below, indicate which
sorting algorithm property the caller would most need, then identify the fastest sorting algorithm which
possesses that property from the options provided.

1. I am in charge of selling the new Taylor Swift Album. Instead of setting a price up front, I set up
a web page to collect bids for a copy of the album, and in all I got too many bids to ship at once!
I’ve decided to ship the copies in order of highest-bid-first. In the case that two people bid the same
amount, I’m going to first ship to whomever entered their bid first. Currently the bids are listed
in the order that I received them, so I need to figure out how to re-order them all into the proper
shipping order. Should I use Heap Sort, Merge Sort, Quick Sort, or Insertion Sort?

Property: Stable Sort

Algorithm: Merge Sort

2. I’m working on a database that will maintain a constantly sorted list of objects. This list will grow as
we receive more items from users. It is critical that the list is quickly updated and is always in sorted
order. If we get a batch of new objects in quick succession we must start sorting as soon as we get
the first object, we can’t wait for all the objects in the batch arrive. I was thinking I would use Merge
Sort so I could “merge” new elements in, but my friend thought I should “insert” them in instead
which would suggest Insertion Sort.

Property: Online (or Adaptive)

Algorithm: Insertion Sort

(2 pts)Question 10: Adaptive Sort
What does it mean for a sorting algorithm to be adaptive? Write the letter of your choice in the box
provided.
A. It does not use any auxiliary data structures.

B. It rearranges elements randomly to achieve better performance.

C. It runs faster if the list is close to sorted.

D. It can adapt to any data types in the input.

E. The relative order of “tied” elements is maintained.

C

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 8 Final Exam

(4 pts)Question 11: Quick Sort Runtimes
Answer each question in the box provided.

1. What is the best case runtime of quicksort? Θ(n log n)

2. Explain the context in which this best case runtime would be achieved (1-2 sentences).

The pivot is consistently approximately the largest/smallest item in the list. I.e. the partition
is consistently very unbalanced.

3. What is the worst case runtime of quicksort? Θ(n2)

4. Explain the context in which this runtime would be achieved (1-2 sentences).

The pivot is near the middle of the list. I.e. the partition is balanced.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 9 Final Exam

Section 5: Graphs
(8 pts)Question 12: Maximum number of edges
Below we will give several descriptions of a graph. In the box provided, indicate the maximum number of
edges that graph could have.

1. A simple, directed graph with 10 nodes

90

2. A simple, undirected graph with 10 nodes

45

3. A simple, undirected graph with 10 nodes where each node’s degree is not more than 1

5

4. A Tree with 10 nodes

9

(4 pts)Question 13: Topological Sort
List the nodes in the graph below such that they are in two different topologically sorted orderings.

Topological Order 1: 0,5,1,4,3,2

Topological Order 2: 0,1,5,4,3,2

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 10 Final Exam

(2 pts)Question 14: BFS
For the graph below, list the nodes an order that they might be removed from the queue in a BFS starting
from node 0 (note that this is the same as the graph above, but now undirected).

BFS Order: 0,1,2,4,5,3

(2 pts)Question 15: Dijkstras
For the graph below, list the nodes an order that they might be removed from the priority queue when
running Dijkstra’s algorithm starting from node 0 (note that his is the same as the previous graph, but now
with weights).

Dijkstra’s Order: 0,4,1,5,3,2

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 11 Final Exam

(6 pts)Question 16: MSTs
The next 2 questions will relate to running minimum spanning tree algorithms (Kruskal’s and Prim’s) on
the graph below:

1. What are the weights of the first three edges added to the minimum spanning tree when running
Kruskal’s algorithm?

First edge’s weight: 5

Second edge’s weight: 7

Third edge’s weight: 8

2. What are the first three edges added to the minimum spanning tree when running Prims’s algorithm
starting with node 0?

First edge’s weight: 8

Second edge’s weight: 5

Third edge’s weight: 7

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 12 Final Exam

Section 6: Parallelism
(8 pts)Question 17: ForkJoin
For the next series of questions you will write code to implement the following sequential algorithm as a
parallel algorithm using the Java ForkJoin Framework.

The following sequential method finds the sum of all odd values in the given array.

int sumOdd(in[] arr){
int sum = 0;
for(int i = 0; i < arr.length; i++{

if (arr[i]%2==1)
sum += arr[i];

}
return sum;

}

On the next page we have provided the majority of the code to implement sumOdd in parallel using ForkJoin
and RecursiveTask. In particular, we have provided a main class which invokes the ForkJoin Pool, hve
written the constructor for the RecursiveTask class, and have provided the code that will run when the array
length is below the sequential cutoff (we chose 100 as the cutoff) insdie the compute method. Complete our
implementation by finishing the compute method.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 13 Final Exam

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;

public class Main {
public static final ForkJoinPool fjPool = new ForkJoinPool();
public static Integer SumOdd (int[] input) {

return fjPool.invoke(new SumOddTask(input, 0, input.length));
}

}

public class SumOddTask extends RecursiveTask<Integer> {
int[] arr;
int hi;
int lo;

public SumOddTask(int[] arr, int lo, int hi){
this.arr = arr;
this.hi = hi;
this.lo = lo;
this.sum = 0;

}

public int compute(){
if (hi-lo < 100){

for(int i = lo; i < hi; i++){
if (arr[i]%2==1)

this.sum += arr[i];
}
return this.sum;

}
\\ finish the compute method here

SumOddTask left = new SumOddTask(arr,lo,(hi+lo)/2);
SumOddTask right= new SumOddTask(arr,(hi+lo)/2,hi);
left.fork();
int rightAns = right.compute();
int leftAns = left.join();
return leftAns + rightAns;

}

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 14 Final Exam

(2 pts)Question 18: Map,Reduction
Express the task from the previous question(that of finding the sum of all odd values in an array) as a map
and a reduction (use psuedocode or 1-2 sentences of English).

Map all values in the array to 0 if even (and themselves if odd), then use a reduction to find
the sum of the array.

(2 pts)Question 19: Parallel Pack

Suppose after the first stage of a parallel pack (i.e. filter) operation (that is, the map applying a boolean
function to each index of the input array), you find that the value of index i is 0, index i + 1 is 1, and index
i + 2 is 1.

Next, suppose that after the second stage of the same parallel pack operation (that is, the parallel prefix
sum), you find that the value of index i is 18.

1. At what index of the final output array will you find the value that was at index i + 1 of the input
array?

18

2. In what index of the output array will you find the value that was at index i + 2 of the input array?

19

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 15 Final Exam

Section 7: Concurrency
Suppose two people are eating a meal, but they must share one set of cutlery (fork and knife). A meal
consists of a salad and an entree. To eat some salad requires just the fork, to eat some entree requires both
the fork and the knife. Washing the cutlery requires both the fork and the knife. Below we have java classes
that manage the sharing. Each question in this section will relate to these java classes provided. In each
case every thread will have its own local Meal object, but there will only be one instance of the Cutlery
class shared among all threads. Line numbers have been provided for reference in the upcoming questions.

1 public class Meal{
2 public int saladLeft = 10;
3 public int entreeLeft = 10;
4 }
5
6 public class Cutlery{
7 Object fork = new Object();
8 Object knife = new Object();
9 boolean dirty = false;
10
11 public void eatSalad(Meal m){
12 synchronized(fork){
13 m.saladLeft--;
14 this.dirty = true;
15 }
16 }
17
18 public void eatEntree(Meal m){
19 synchronized(fork){
20 synchronized(knife){
21 m.entreeLeft--;
22 this.dirty = true;
23 }
24 }
25 }
26
27 public void wash(){
28 if(this.dirty){
29 synchronized(knife){
30 synchronized(fork){
31 System.out.println("Washing!");
32 this.dirty = false;
33 }
34 }
35 }
36 }
37 }

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 16 Final Exam

(2 pts)Question 20: Data Race
The above code contains a data race. Describe the data race using 1-2 sentences.

If two threads both call wash then there can be a simultaneous read in the if statement check
and write in the body.

(2 pts)Question 21: Deadlock
The above code also contains a potential for deadlock. Describe a situation in which deadlock would occur
(1-2 sentences).

If T1 calls eatEntree while T2 calls wash then T2 could lock the knife, then T1 could lock
the fork.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 17 Final Exam

(8 pts)Question 22: Deadlock and/or Race Condition
Below we provide alternative implementations of the wash method. For each, indicate whether that version
of wash (along with the rest of the code above) has a potential for deadlock and whether it contains a race
condition by writing "yes" or "no" in the corresponding box.

1.

synchronized public void wash(){
if (this.dirty){

System.out.println("Washing!");
this.dirty = false;

}
}

Deadlock? No

Race Condition? Yes

2.

public void wash(){
synchronized(knife){

synchronized(fork){
if (this.dirty){

System.out.println("Washing!");
this.dirty = false;

}
}

}
}

Deadlock? Yes

Race Condition? No

3.

public void wash(){
synchronized(knife){

Meal m = new Meal();
this.eatSalad(m);
if(this.dirty){

System.out.println("Washing!");
this.dirty = false;

}
}

}

Deadlock? Yes

Race Condition? Yes

4.

synchronized void wash(){
synchronized(knife){

synchronized(fork){
if (this.dirty){

System.out.println("Washing!");
this.dirty = false;

}
}

}
}

Deadlock? Yes

Race Condition? No

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 18 Final Exam

Section 8: P, NP, NP-Hard, NP-Complete
(5 pts)Question 23: Am I a millionaire?

For each scenario below we would be able to conclude one of:

A. P = NP,

B. P ⊂ NP,

C. Inconclusive (meaning that scenario alone does not resolve the question).

Correctly identify which conclusion we can draw from each scenario by writing the corresponding letter in
the box provided.

1. A problem from EXP is found to belong to NP − Complete.

C

2. The Independent Set Problem is found to be outside of P.

B

3. The Minimum Spanning Tree problem is found to be in class NP.

C

4. The problem of finding the shortest path in a graph with negative-weight edges is found to be in class
NP − Complete.

A

5. The problem of determining whether a given graph has a Hamiltonian Path is found to belong to
class P.

A

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 19 Final Exam

Extra Credit
(2 pts)Question Extra Credit: What did you learn this quarter?
Nathan’s grandmother, Elouise, is 94 years old and has never used a computer before in her life. Summarize
what you learned this quarter in a way that Elouise would appreciate.

text

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 20 Final Exam

Scratch Work
Nothing written on this page will be graded.

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

CSE 332 21 Final Exam

Identities
Nothing written on this page will be graded.

Summations

∞∑
i=0

xi = 1
1 − x

for |x|< 1

n−1∑
i=0

=
i=1∑
n

= n

n∑
i=0

i = 0 +
i=1∑
n

i = n(n + 1)
2

n∑
i=1

i2 = n(n + 1)(2n + 1)
6 = n3

3 + n2

2 + n

6
n∑

i=0
i3 =

(
n(n + 1)

2

)2
= n4

4 + n3

2 + n2

4
n−1∑
i=0

xi = 1 − xn

1 − x

n−1∑
i=0

1
2i

= 2 − 1
2n−1

Logs

xlogx(n) = n

loga(bc) = c loga(b)
alogb(c) = clogb(a)

logb(a) = logd(a)
logd(b)

Creative Commons BY-NC 4.0 Nathan Brunelle

https://creativecommons.org/licenses/by-nc/4.0/

