CSE 332 Winter 2024 Lecture 10: B Trees and Hashing
 Nathan Brunelle

http://www.cs.uw.edu/332

Large memory is slow to access. We use different "layers" or memory to balance quantity of storage with speed of access.

Size: 1 TB
Speed: 8,000,000 cycles per lookup

B Trees Motivation

- Memory Locality
- Observation: 4 practice, when you read from memorylyou're likely to soon thereafter read from nearby memory
- When memory is "fetched", it's collected in blocks at a time
- Works well for arrays (they're contiguous is memory)
- May not be helpful for linked lists, BSTs, etc. (pointers could go wherever)
- Solution: Have a BST-like data structure which can take advantage of locality

First Idea

- BST nodes have a lot of information inside them
- We don't need that information for "intermediate" nodes
- Solution: Delay loading anything except keys as long as possible
String str.

Second Idea

- Nodes may not be close to each other in memory
- In the worst case, each step in a traversal could go deep in memory
- Solution: Increase branching factor of tree, load blocks of keys at a time
- M-ary tree: each node has at most M children Choose M to snugly fit in a block

B Trees (aka B+ Trees)

- Two types of nodes:
- Internal Nodes
- Sorted array of $M-1$ keys
- Has M children
- No other data!
- Leaf Nodes
- Sorted array of L key-value pairs

- Subtree between values a and b must contain only keys that are $\geq a$ and $<b$
- If a is missing use $-\infty$
- If b is missing use ∞

$$
a \leq k<b
$$

Find

- Start at the root node
- Binary search internal nodes to identify correct subtree
- Repeat until you reach a leaf node
- Binary search the leaf to get the value

Aside: Implementation

-What an internal node class might look like: \rightarrow int M

\Rightarrow Node[] children

- int num_children
- What a leaf node class might look like:
- int L
- E[] data

- int num_items

B Tree Structure Requirements

- Root:
- If the tree has $\leq L$ items then root is a leaf node
- Otherwise it is an internal node
- Internal Nodes:
- Must have at least $\left[\frac{M}{2}\right]$ children (at least half full)
- Unless it's the root and there aren't enough items to have that many children
- Leaf Nodes:
- Must have at least Must have at least $\left\lceil\frac{L}{2}\right\rceil$ items (at least half full)
- Unless it's the rootand there aren't at least $\left|\frac{L}{2}\right|$ items
- All leaves are at the same depth

Insertion Summary

- Binary search to find which leaf should contain the new item
- If there's room, add it to the leaf array (maintaining sorted order)
- If there's not room, split
- Make a new [eaf node, move the larger $\left\lfloor\frac{L+1}{2}\right\rfloor$ items to it
- If there's room in the parent internal node, add new leaf to it (with new key bound value)
- If there's not room in the parent internal node, split that!!
- Make a new internal node and have it point to the larger $\left\lfloor\frac{M+1}{2}\right\rfloor$
- If there's room in the parent internal hode, add this internatnodeto it
- If there's not room, repeat this process until there is!

Insertion TLDR

- Find where the item goes by repeated binary search
- If there's room, just add it
- If there's not room, split things until there is

Insert Example

Insert 22

Insert Example

Insert 22

Insert Example

Insert 26

Insert Example

Insert 26

Insert Example

Insert 8

Insert Example
Insert 8

Insert Example

Insert Example

Insert 8

Let's do it together!

$$
\begin{aligned}
& : M=3, L=3 \\
& - \text { nsertal of these } \\
& 331,54,11,420,6,32 \\
& \hline 64
\end{aligned}
$$

Running Time of Find

- Maximum number of leaves:
- $\frac{2 n}{L}$
- $\Theta\left(\frac{n}{L}\right)$
- Maximum height of the tree:
- $2 \log _{M} \frac{2 n}{L}$

Overall: $\Theta\left(\log _{2} M \cdot \log _{M} \frac{n}{L}+\log _{2} L\right)$ Usually simplified to:

- $\Theta\left(\log _{M} \frac{n}{L}\right)$
- Find:
- One binary search per level of the tree - $\Theta\left(\log _{2} M\right)$ per search
- One binary search in the leaf
- $\Theta\left(\log _{2} L\right)$

$$
\Theta\left(\log _{2} M \cdot \log _{M} n\right)
$$

Running Time of Insert

- Find:
- $\Theta\left(\log _{2} M \cdot \log _{M} n\right)$
- Add item to leaf:
- $\Theta(L)$

Overall: $\Theta\left(L+M \cdot \log _{M} n\right)$
Usually simplified to:

$$
\Theta\left(\log _{2} M \cdot \log _{M} n\right)
$$

- Split a leaf
- $\Theta(L)$
- Split one internal node:
- $\Theta(M)$

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete Summary

- Find the item
- Remove the item from the leaf
- If that causes the leaf to be under-full, adopt from a neighbor
- If that would cause the neighbor to be under-full, merge those two leaves
- Update the parent
- If that causes the parent to be under-full, adopt from a neighbor
- If that causes the neighbor to be under-full, merge
- Update the parent

[^0]
Delete TLDR

- Find and remove from leaf
- Keep doing this until everything is "full enough":
- If the node is now too small, adopt from a neighbor
- If the neighbor is too small then merge

Next topic: Hash Tables

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Hash Table (Average)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Two Different ideas of "Average"

- Expected Time
- The expected number of operations a randomly-chosen input uses
- Assumed randomness from somewhere
- Most simply: from the input
- Preferably: from the algorithm/data structure itself
- $f(n)=$ sum of the running times for each input of size n divided by the number of inputs of size n
- Amortized Time
- The long-term average per-execution cost (in the worst case)
- Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
- Why? The worst case may be guaranteed to be rare
- $f(n)=$ the sum of the running times from a sequence of n sequential calls to the function divided by n

Amortized Example

- ArrayList Insert:
- Worst case: $\Theta(n)$

0	1	2	3	4	5	6	7	8

0	1	2	3	4	5	6	7	8							

Amortized Example

- ArrayList Insert:

- First 8 inserts: 1 operation each
- $9^{\text {th }}$ insert: 9 operations
- Next 7 inserts: 1 operation each
- $17^{\text {th }}$ insert: 17 operations
- Next 15 inserts: 1 operation each

Do x operations with cost 1
Do 1 operation with cost x
Do x operations with cost 1
Do 1 operation with cost $2 x$
Do $2 x$ operations with cost 1
Do 1 operation with cost $4 x$
Do $4 x$ operations with cost 1
Do 1 operation with cost $8 x$
...
Amortized: each operation cost 2 operations
$\Theta(1)$

- ...

0	1	2	3	4	5	6	7	8

0	1	2	3	4	5	6	7	8							

Hash Tables

- Motivation:
- Why not just have a gigantic array?

Problem?

Hash Tables

- Idea:

- Have a small array to store information
- Use a hash function to convert the key into an index
- Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
- Store key at the index given by the hash function
- Do something if two keys map to the same place (should be very rare)
- Collision resolution

Key Object

Index
between 0
and size-1

Insert / find /

 delete
Example

- Key: Phone Number
- Value: People
- Table size: 10
- $h($ phone $)=$ number as an integer $\% 10$
- $h(8675309)=9$

What Influences Running time?

Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
- Calculating the hash should be negligible
- Should randomly scatter objects
- Objects that are similar to each other should be likely to end up far away
- Should use the entire table
- There should not be any indices in the table that nothing can hash to
- Picking a table size that is prime helps with this
- Should use things needed to "identify" the object
- Use only fields you would check for a .equals method be included in calculating the hash
- More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

- $h($ phone $)=$ the first digit of the phone number
- No US phone numbers start with 1 or 0
- If we're sampling from this class, 2 is by far the most likely

Compare These Hash Functions (for strings)

- Let $s=s_{0} s_{1} s_{2} \ldots s_{m-1}$ be a string of length m
- Let $a\left(s_{i}\right)$ be the ascii encoding of the character s_{i}
- $h_{1}(s)=a\left(s_{0}\right)$
- $h_{2}(s)=\left(\sum_{i=0}^{m-1} a\left(s_{i}\right)\right)$
- $h_{3}(s)=\left(\sum_{i=0}^{m-1} a\left(s_{i}\right) \cdot 37^{i}\right)$

Collision Resolution

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
- Separate Chaining
- Use a secondary data structure to contain the items
- E.g. each index in the hash table is itself a linked list
- Open Addressing
- Use a different spot in the table instead
- Linear Probing
- Quadratic Probing
- Double Hashing

Separate Chaining Insert

- To insert k, v :
- Compute the index using $i=h(k) \%$ size
- Add the key-value pair to the data structure at table[i]

Separate Chaining Find

- To find k :
- Compute the index using $i=h(k)$ \% size
- Call find with the key on the data structure at table[i]

Separate Chaining Delete

- To delete k :
- Compute the index using $i=h(k) \%$ size
- Call delete with the key on the data structure at table[i]

Formal Running Time Analysis

- The load factor of a hash table represents the average number of items per "bucket"
- $\lambda=\frac{n}{\text { size }}$
- Assume we have a has table that uses a linked-list for separate chaining
- What is the expected number of comparisons needed in an unsuccessful find?
- What is the expected number of comparisons needed in a successful find?
- How can we make the expected running time $\Theta(1)$?

Load Factor?

Load Factor?

Load Factor?

[^0]: - ...

