CSE 332 Autumn 2023 Lecture 12: Hashing
 Nathan Brunelle

http://www.cs.uw.edu/332

Find

- Start at the root node
- Binary search internal nodes to identify correct subtree
- Repeat until you reach a leaf node
- Binary search the leaf to get the value

Insertion Summary

- Binary search to find which leaf should contain the new item
- If there's room, add it to the leaf array (maintaining sorted order)
- If there's not room, split
- Make a new leaf node, move the larger $\left\lfloor\frac{L+1}{2}\right\rfloor$ items to it
- If there's room in the parent internal node, add new leaf to it (with new key bound value)
- If there's not room in the parent internal node, split that!
- Make a new internal node and have it point to the larger $\left\lfloor\frac{M+1}{2}\right\rfloor$
- If there's room in the parent internal node, add this internal node to it
- If there's not room, repeat this process until there is!

Insertion TLDR

- Find where the item goes by repeated binary search
- If there's room, just add it
- If there's not room, split things until there is

Running Time of Find

- Maximum number of eaves: R
- $\frac{2 n}{L}$

Overall: $\Theta\left(\log _{2} M \cdot \log _{M} \frac{n}{L}+\log _{2} L\right)$

- Maximum height of the tree:

Usually simplified to:

- $2 \log _{M} \frac{2 n}{L}$

- One binary search per level of the tree

$$
\text { - } \Theta\left(\log _{2} M\right) \text { per search }
$$

- One binary search in the leaf

Running Time of Insert

- Find:
- $\Theta\left(\log _{2} M \cdot \log _{M} n\right)$
- Add item to leaf:
- $\Theta(L)$
- Split a leaf - $\Theta(L)$

Overall: $\Theta\left(L+{ }_{2} M y \log _{M} n\right)$
Usually simplified to.

- Split one internal node:

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete

- Recall: all nodes must be at least half full (except root at startup)

Delete Summary

- Find the item

- Remove the item from the leaf
- If that causes the leaf to be under-full, adopt from a neighbor

- If that would cause the neighbor to be under-full, merge them
- Update the parent
- If that causes the parent to be under-full, adopt from a neighbor
- If that causes the neighbor to be under-full, merge
- Update the parent

Delete TLDR

- Find and remove from leaf
- Keep doing this until everything is "full enough":
- If the node is now too small, adopt from a neighbor
- If the neighbor is too small then merge

Next topic: Hash Tables

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Hash Table (Average)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Two Different ideas of "Average"

- Expected Time
- The expected number of operations a randomly-chosen input uses
- Assumed randomness from somewhere
- Most simply: from the input
- Preferably: from the algorithm/data structure itself
- $f(n)=$ sum of the running times for each input of size n divided by the number of inputs of size n

(Amortized Time

\square

- The long-term average per-execution cost (in the worst case)
- Rather than look at the worst case of one execution, look at the total worst case of a sequential chain of many executions
- Why? The worst case may be guaranteed to be rare
- $f(n)=$ the sum of the running times from a sequence of n sequential calls to the function divided by n

Amortized Example

- ArrayList Insert:
- Worst case: $\Theta(n)$

Amortized Example

- ArrayList Insert:

- First 8 inserts: 1 operation each
- $9^{\text {th }}$ inserti 9 operations
- Next 7 inserts: 1 operation each
- $17^{\text {th }}$ insert: 17 operations
- Next 15 inserts: 1 operation each
- ...

Hash Tables

- Motivation:

- Why not just have agigantic array?

$$
F e
$$

Problem? ~ 8 exabyxes

Hash Tables

- Idea:

- Have a small array to store information
- Use a hash function to convert the key into an index
- Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
- Store key at the index given by the hash function
- Do something if two keys map to the same place (should be very rare)
- Collision resolution

Key Object

Index

between 0
and size-1

Insert / find / delete

Example

- Key: Phone Number
- Value: People
- Table sizec 10

Q $h($ phone $)$ 氕 number as an integer $\% 10$

- $h(8675309)=9$

What Influences Running time?

- Rarity otrolysions-- quality ox hash
- Size of the ur ran/

Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
- Calculating the hash should be negligible
- Should "randomly" scatter objects
- Even similar objects should be able to be far away
- Should use the entire table
- There should not be any indices in the table that nothing can hash to
- Picking a table size that is prime helps with this
- Should use things needed to4"identify"" the object
- Use only fields you would check for a .equals method be included in calculating the hash
- More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

; $h($ phone $)=$ the first digit of the phone number

- No US phone numbers start with 1 or 0
- If we're sampling from this class, 2 is by far the most likely

Compare These Hash Functions (for strings)

- Let $s=s_{0} s_{1} s_{2} \ldots s_{m-1}$ be a string of length m
- Let $a\left(s_{i}\right)$ be the ascii encoding of the character s_{i}
- $h_{1}(s)=a\left(s_{0}\right)$
- $h_{2}(s)=\left(\sum_{i=0}^{m-1} a\left(s_{i}\right)\right)$
- $h_{3}(s)=\left(\sum_{i=0}^{m-1} a\left(s_{i}\right) \cdot 37^{i}\right)$

Collision Resolution

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
- Separate Chaining
- Use a secondary data structure to contain the items
- E.g. each index in the hash table is itself a linked list
- Open Addressing
- Use a different spot in the table instead
- Linear Probing
- Quadratic Probing
- Double Hashing

Separate Chaining Insert

- To insert k, v :
- Compute the index using $i=h(k) \%$ size
- Add the key-value pair to the data structure at table[i]

Separate Chaining Find

- To find k :
- Compute the index using $i=h(k)$ \% size
- Call find with the key on the data structure at table[i]

Separate Chaining Delete

- To delete k :
- Compute the index using $i=h(k) \%$ size
- Call delete with the key on the data structure at table[i]

Formal Running Time Analysis

- The load factor of a hash table represents the average number of items per "bucket"
- $\lambda=\frac{n}{\text { size }}$
- Assume we have a has table that uses a linked-list for separate chaining
- What is the expected number of comparisons needed in an unsuccessful find?
- What is the expected number of comparisons needed in a successful find?
- How can we make the expected running time $\Theta(1)$?

Load Factor?

Load Factor?

Load Factor?

Collision Resolution: Linear Probing

- When there's a collision, use the next open space in the table

Linear Probing: Insert Procedure

- To insert k, v
- Calculate $i=h(k) \%$ size
- If table $[i]$ is occupied then try $(i+1) \%$ size
- If that is occupied try $(i+2) \%$ size
- If that is occupied try $(i+3) \%$ size
- ...

Linear Probing: Find

- Let's do this together!

Linear Probing: Find

- To find key k
- Calculate $i=h(k)$ \% size
- If table [i] is occupied and does not contain k then look at $(i+1) \%$ size
- If that is occupied and does not contain k then look at $(i+2) \%$ size
- If that is occupied and does not contain k then look at $(i+3) \%$ size
- Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

- Let's do this together!

Linear Probing: Delete

- Let's do this together!

