CSE 332 Winter 2024 Lecture 13: Hashing and Sorting
 Nathan Brunelle
 http://www.cs.uw.edu/332

Collision Resolution: Linear Probing

- When there's a collision, use the next open space in the table

Linear Probing: Insert Procedure

- To insert k, v
- Calculate $i=h(k) \%$ arrsize
- If table[i] is occupied then try $(i+1) \%$ arrsize
- If that is occupied try $(i+2) \%$ arrsize
- If that is occupied try $(i+3) \%$ arrsize
- ...

Linear Probing: Find

- $i=h(k) \%$ arrsize
- If i has the key or it's empty, then we're done
- Otherwise:
- Check $(i+1) \%$ arrsize if it's there, done else
- Check $(i+2) \%$ arrsize if it's there, done else
- Check $(i+3) \%$ arrsize
- ...
- Until we hit an empty cell

Linear Probing: Find

- To find key k
- Calculate $i=h(k) \%$ arrsize
- If table[i] is occupied and does not contain k then look at $(i+1) \% \operatorname{arrsize}$
- If that is occupied and does not contain k then look at $(i+2) \%$ arrsize
- If that is occupied and does not contain k then look at $(i+3) \%$ arrsize
- Repeat until you either find k or else you reach an empty cell in the table

Linear Probing: Delete

- Problem: don't want to leave an empty space when deleting
- Option 1: when we delete, move the "last thing" with a matching hash to that location
- Option 2: "tombstone" deletion. When deleting something, leave a special marker to indicate something used to be there

Linear Probing: Delete

- Option 1: Find the last thing with a matching hash, move that into the spot you deleted from
- Option 2: Called "tombstone" deletion. Leave a special object that indicates an object was deleted from there
- The tombstone does not act as an open space when finding (so keep looking after its reached)
- When inserting you can replace a tombstone with a new item

Downsides of Linear Probing

- What happens when λ approaches 1 ?
- Longer and longer clusters of items
- Runnings times get longer and longer

Quadratic Probing: Insert Procedure

- To insert k, v
- Calculate $i=h(k) \%$ arrsize
- If table $[i]$ is occupied then try $\left(i+1^{2}\right) \%$ arrsize
- If that is occupied try $\left(i+2^{2}\right) \%$ arrsize
- If that is occupied try $\left(i+3^{2}\right) \%$ arrsize
- If that is occupied try $\left(i+4^{2}\right) \%$ arrsize
- ...

Quadratic Probing: Example

- Insert:
- 76
- 40
- 48
- 5
- 55
- 47

Using Quadratic Probing

- If you probe tablesize times, you start repeating the same indices
- If tablesize is prime and $\lambda<\frac{1}{2}$ then you're guaranteed to find an open spot in at most tablesize $/ 2$ probes
- Helps with the clustering problem of linear probing, but does not help if many things hash to the same value

Double Hashing: Insert Procedure

- Given h and g are both good hash functions
- To insert k, v
- Calculate $i=h(k) \%$ size
- If table $i]$ is occupied then try $(i+g(k)) \%$ size
- If that is occupied try $(i+2 \cdot g(k)) \%$ size
- If that is occupied try $(i+3 \cdot g(k)) \%$ size
- If that is occupied try $(i+4 \cdot g(k)) \%$ size
- ...

Rehashing

- If your load factor λ gets too large, copy everything over to a larger hash table
- To do this: make a new array with a new hash function (maybe just a new modulus)
- Re-insert all items into the new hash table with the new hash function
- New hash table should be "roughly" double the size (but probably still want it to be prime)
- General Guideline:
- Separate Chaining: rehash when $\lambda=2$
- Open Addressing: rehash when $\lambda=\frac{1}{2}$

Sorting

- Rearrangement of items into some defined sequence
- Usually: reordering a list from smallest to largest according to some metric
- Why sort things?

More Formal Definition

- Input:
- An array A of items
- A comparison function for these items
- Given two items x and y, we can determine whether $x<y, x>y$, or $x=y$
- Output:
- A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Permutation: a sequence of the same items but perhaps in a different order

Sorting "Landscape"

- There is no singular best algorithm for sorting
- Some are faster, some are slower
- Some use more memory, some use less
- Some are super extra fast if your data matches particular assumptions
- Some have other special properties that make them valuable
- No sorting algorithm can have only all the "best" attributes

"Moving Day" Sorting Algorithm

Selection Sort

- Idea: Find the next smallest element, swap it into the next index in the array

Selection Sort

- Swap the thing at index 0 with the smallest thing in the array
- Swap the thing at index 1 with the smallest thing after index 0
- ...
- Swap the thing at index i with the smallest thing after index $i-1$

```
for (i=0; i<a.length; i++){
```

smallest $=\mathrm{i}$;
for ($\mathrm{j}=\mathrm{i} ; \mathrm{j}$ <a.length; $\mathrm{j}++$) $\{$
if (a[j]<a[smallest])\{ smallest=j;\}
\}
temp $=\mathrm{a}[\mathrm{i}]$;
a[i] = a[smallest];
a [smallest] $=\mathrm{a}[\mathrm{i}]$;

Running Time:

Worst Case: $\Theta(\cdot)$
Best Case: $\Theta(\cdot)$

10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33

Insertion Sort

- Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Insertion Sort

- If the items at index 0 and 1 are out of order, swap them
- Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger
- ...
- Keep swapping the item at index i with the thing to its left as long as the left thing is larger for (i=1; i<a.length; i++)\{
prev $=\mathrm{i}-1$;
while(a[i] <a[prev] \&\& prev >-1)\{
temp $=a[i] ;$
$\mathrm{a}[\mathrm{i}]=\mathrm{a}[\mathrm{prev}]$;
$\mathrm{a}[\mathrm{prev}]=\mathrm{a}[\mathrm{i}]$;
i--;
prev--;
\}
\}

10	77	5	15	2	22	64	41	18	19	30	21	3	24	23	33

Aside: Bubble Sort - we won't cover it

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" -Donald Knuth, The Art of Computer Programming

Heap Sort

- Idea: Build a maxHeap, repeatedly delete the max element from the heap to build sorted list Right-to-Left

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call percolateDown(root)

Heap Sort

- Build a heap
- Call deleteMax
- Put that at the end of the array

```
myHeap = buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    item = myHeap.deleteMax();
    a[i] = item;
}
```

Running Time:
Worst Case: $\Theta(\cdot)$
Best Case: $\Theta(\cdot)$

"In Place" Sorting Algorithm

- A sorting algorithm which requires no extra data structures
- Idea: It sorts items just by swapping things in the same array given
- Definition: it only uses $\Theta(1)$ extra space
- Selection sort: In Place!
- Insertion sort: In Place!
- Heap sort: Not In Place!
- But we can fix that!

In Place Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

1	8	6	4	7	5	2	3	9	10
0	1	2	3	4	5	6	7	8	9

Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

1	8	6	4	7	5	2	3	9	10
0	1	2	3	4	5	6	7	8	9

Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

Heap Sort

- Idea: When "removing" an element from the heap, swap it with the last item of the heap then "pretend" the heap is one item shorter

In Place Heap Sort

- Build a heap using the same array (Floyd's build heap algorithm works)
- Call deleteMax
- Put that at the end of the array

```
buildHeap(a);
for (int i = a.length-1; i>=0; i--){
    temp=a[i]
    a[i] = a[0];
    a[0] = temp;
    percolateDown(0);
}
```

Running Time:
Worst Case: $\Theta(\cdot)$
Best Case: $\Theta(\cdot)$

Floyd's buildHeap method

- Working towards the root, one row at a time, percolate down

```
buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
```

