CSE 332 Winter 2024 Lecture 15: Sorting

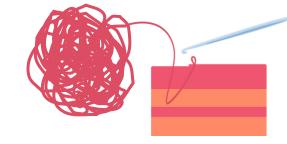
Nathan Brunelle

http://www.cs.uw.edu/332

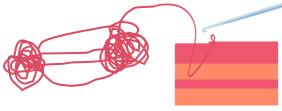
Divide And Conquer Sorting

- Divide and Conquer:
 - Recursive algorithm design technique
 - Solve a large problem by breaking it up into smaller versions of the same problem

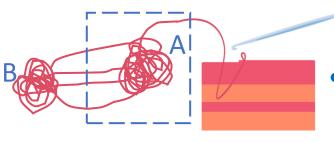
Divide and Conquer



- Base Case:
 - If the problem is "small" then solve directly and return



• Break the problem into subproblem(s), each smaller instances

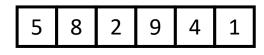


- Conquer:
 - Solve subproblem(s) recursively
- Combine:
 - Use solutions to subproblems to solve original problem

Divide and Conquer Template Pseudocode

```
def my_DandC(problem){
    // Base Case
    if (problem.size() <= small_value){
        return solve(problem); // directly solve (e.g., brute force)
    }
    // Divide
    List subproblems = divide(problem);</pre>
```

```
// Conquer
solutions = new List();
for (sub : subproblems){
    subsolution = my_DandC(sub);
    solutions.add(subsolution);
}
// Combine
return combine(solutions);
```



Merge Sort

- Base Case:
 - If the list is of length 1 or 0, it's already sorted, so just return it

5 8 2 9 4 1 • **Divide:**

5

• Split the list into two "sublists" of (roughly) equal length

2 5 8 1 4 9 • Conquer:

• Sort both lists recursively

2 5 8 1 4 9 1 2 4 5 8 9

• Combine:

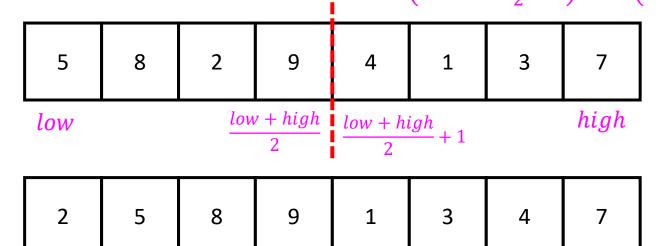
• Merge sorted sublists into one sorted list

Merge Sort In Action!

Sort between indices *low* and *high*

Base Case: if *low* == *high* then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges $\left(low, \frac{low+high}{2}\right)$ and $\left(\frac{low+high}{2} + 1, high\right)$

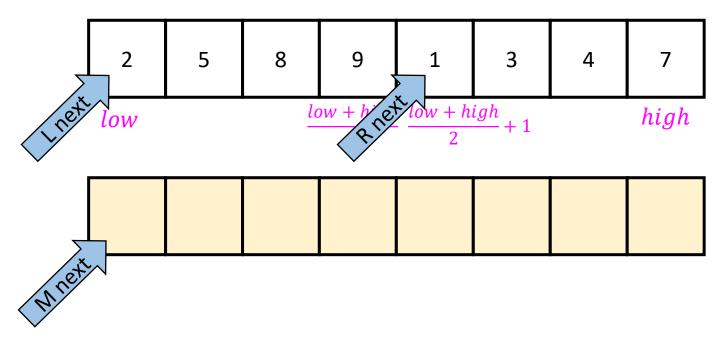


After Recursion:

low

high

Merge (the combine part)



Create a new array to merge into, and 3 pointers/indices:

- L_next: the smallest "unmerged" thing on the left
- R_next: the smallest "unmerged" thing on the right
- M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next, then advance both M_next and whichever of L/R was used.

```
Merge Sort Pseudocode
void mergesort(myArray){
      ms helper(myArray, 0, myArray.length());
}
void mshelper(myArray, low, high){
     if (low == high){return;} // Base Case
      mid = (low+high)/2;
      ms helper(low, mid);
      ms helper(mid+1, high);
      merge(myArray, low, mid, high);
```

```
Merge Pseudocode
```

void merge(myArray, low, mid, high){

```
merged = new int[high-low+1]; // or whatever type is in myArray
l next = low;
r next = high;
m_next = 0;
while (I next \leq mid && r next \leq high){
        if (myArray[l_next] <= myArray[r_next]){
                merged[m_next++] = myArray[l_next++];
        else{
                merged[m_next++] = myArray[r_next++];
while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }</pre>
while (r next <= high){ merged[m next++] = myArray[r next++]; }
for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}</pre>
```

Analyzing Merge Sort

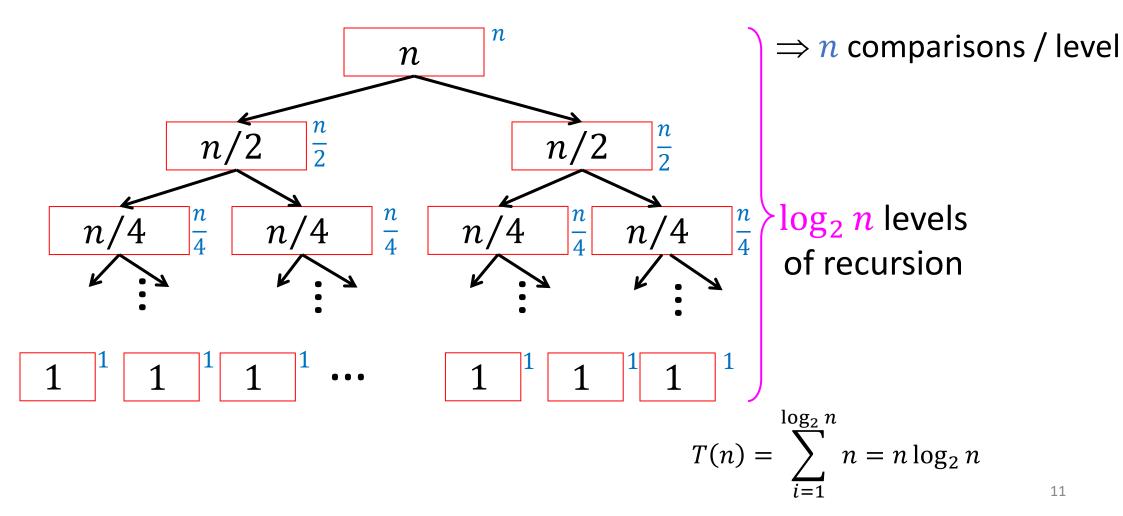
- 1. Identify time required to Divide and Combine
- 2. Identify all subproblems and their sizes
- 3. Use recurrence relation to express recursive running time
- 4. Solve and express running time asymptotically
- **Divide:** 0 comparisons
- Conquer: recursively sort two lists of size $\frac{n}{2}$
- Combine: n comparisons
- Recurrence:

$$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Red box represents a problem instance

Blue value represents time spent at that level of recursion

$$T(n) = 2T(\frac{n}{2}) + n$$



Properties of Merge Sort

- Worst Case Running time:
 - $\Theta(n \log n)$
- In-Place?
 - No!
- Adaptive?
 - No!
- Stable?
 - Yes!
 - As long as in a tie you always pick l_next

Quicksort

- Like Mergesort:
 - Divide and conquer
 - $O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
 - Divide step is the "hard" part
 - *Typically* faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p Start: unordered list

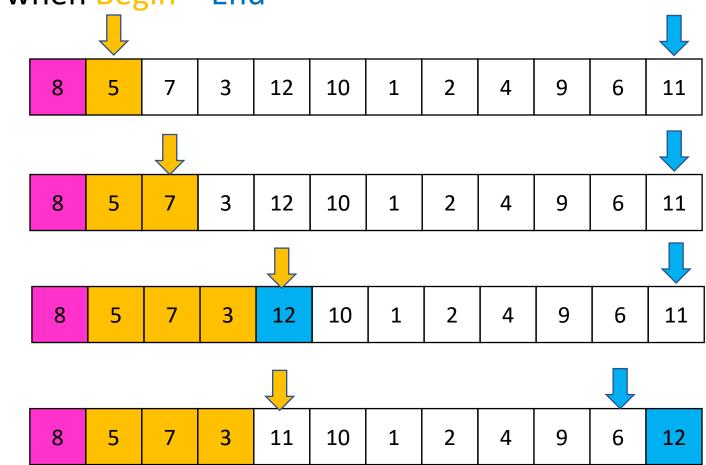
8	5	7	3	12	10	1	2	4	9	6	11	
---	---	---	---	----	----	---	---	---	---	---	----	--

Goal: All elements < p on left, all > p on right

If Begin value < p, move Begin right

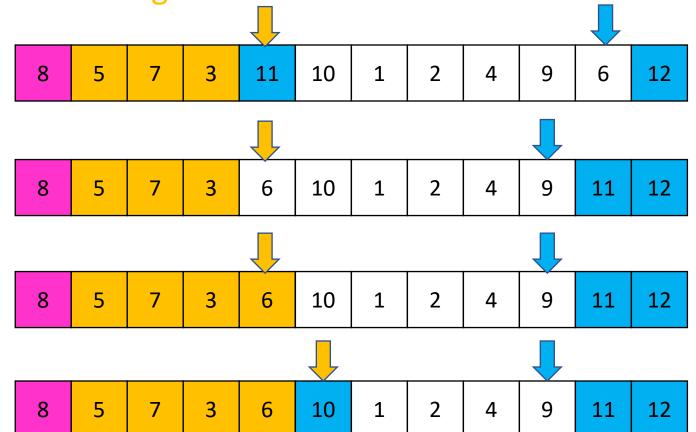
Else swap Begin value with End value, move End Left

Done when **Begin** = **End**



If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left



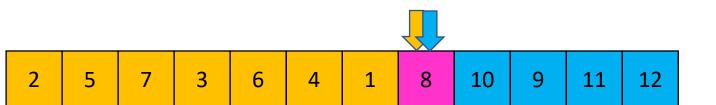
If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when **Begin** = **End**

Case 1: meet at element < p

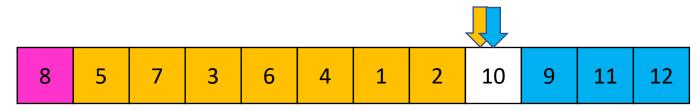
Swap *p* with pointer position (2 in this case)



If Begin value < p, move Begin right

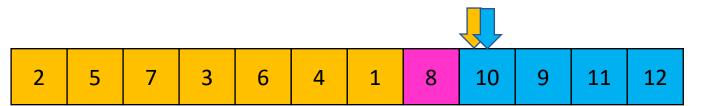
Else swap Begin value with End value, move End Left

Done when **Begin** = **End**



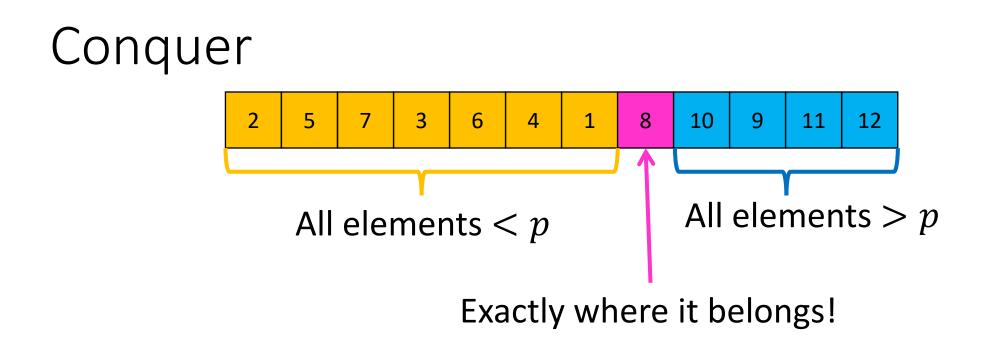
Case 2: meet at element > p

Swap p with value to the left (2 in this case)



Partition Summary

- 1. Put *p* at beginning of list
- 2. Put a pointer (Begin) just after *p*, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element : Swap <math>p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left



Recursively sort Left and Right sublists

Quicksort Run Time (Best)

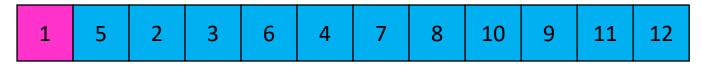
If the pivot is always the median:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

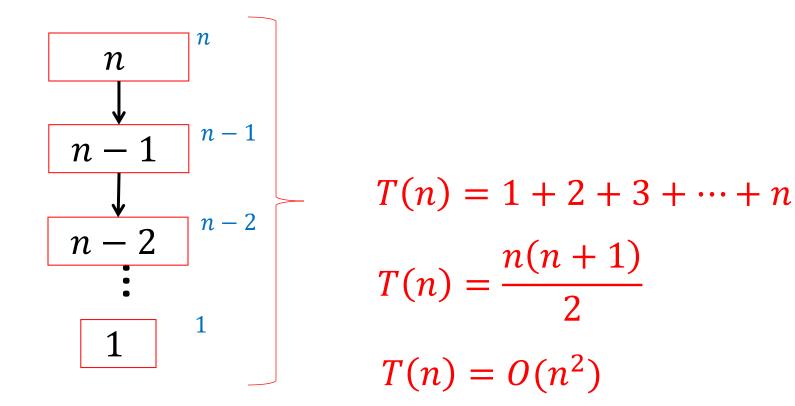


Then we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

Quicksort Run Time (Worst) T(n) = T(n-1) + n



Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

Good Pivot

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
 - Pick a random value as a pivot
 - Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
 - $\Theta(n^2)$
 - But $\Theta(n \log n)$ average! And typically faster than mergesort!
- In-Place?
 -Debatable
- Adaptive?
 - No!
- Stable?
 - No!

Improving Running time

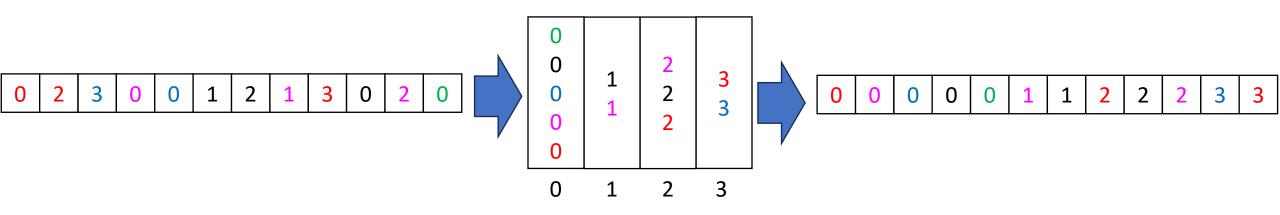
- Recall our definition of the sorting problem:
 - Input:
 - An array A of items
 - A comparison function for these items
 - Given two items x and y, we can determine whether x < y, x > y, or x = y
 - Output:
 - A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than n log n asymptotically.
- Observation:
 - Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

- Assumes the array contains integers between 0 and k 1 (or some other small range)
- Idea:
 - Use each value as an index into an array of size k
 - Add the item into the "bucket" at that index (e.g. linked list)
 - Get sorted array by "appending" all the buckets



BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

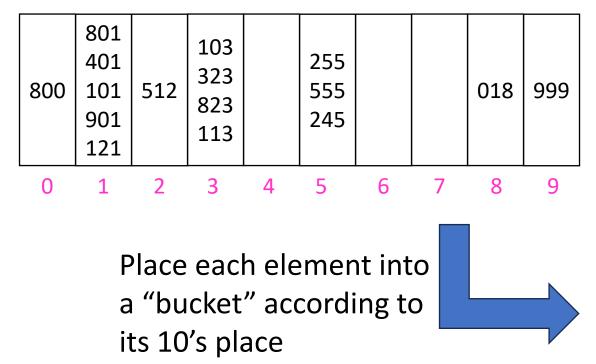
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

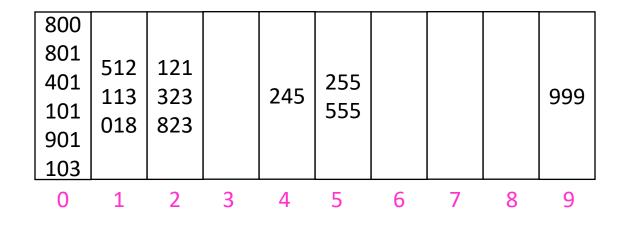
103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

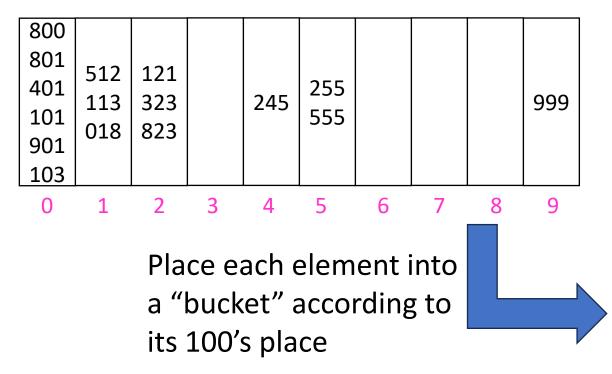
800	801 401 101 901 121	512	103 323 823 113		255 555 245			018	999
0	1	2	3	4	5	6	7	8	9

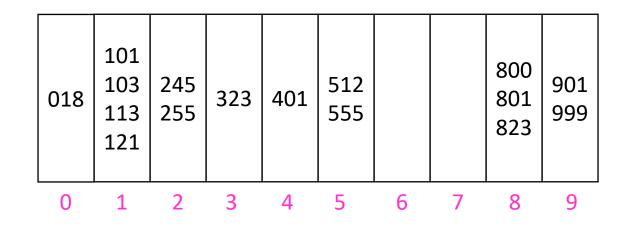
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant



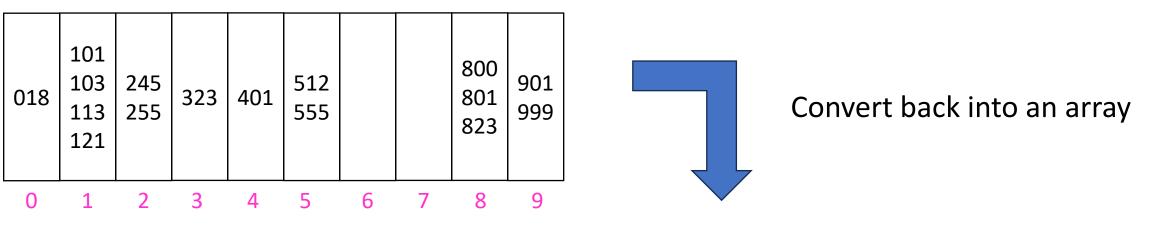


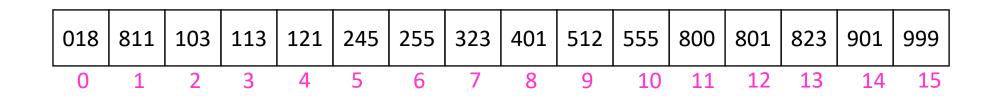
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant





- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

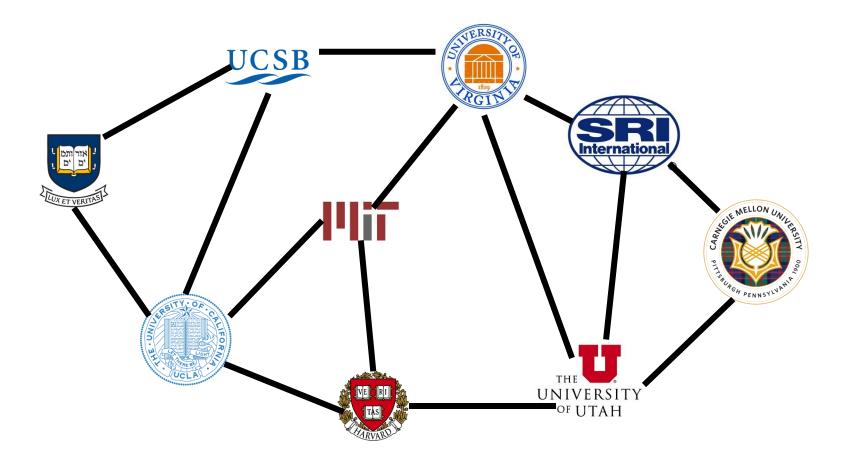


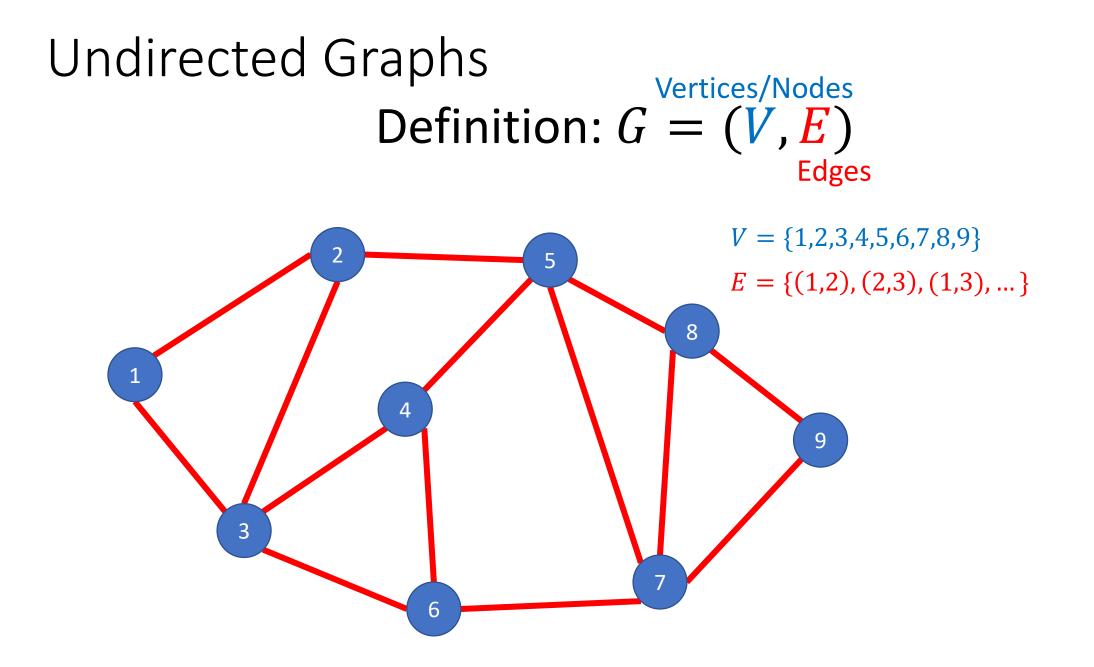


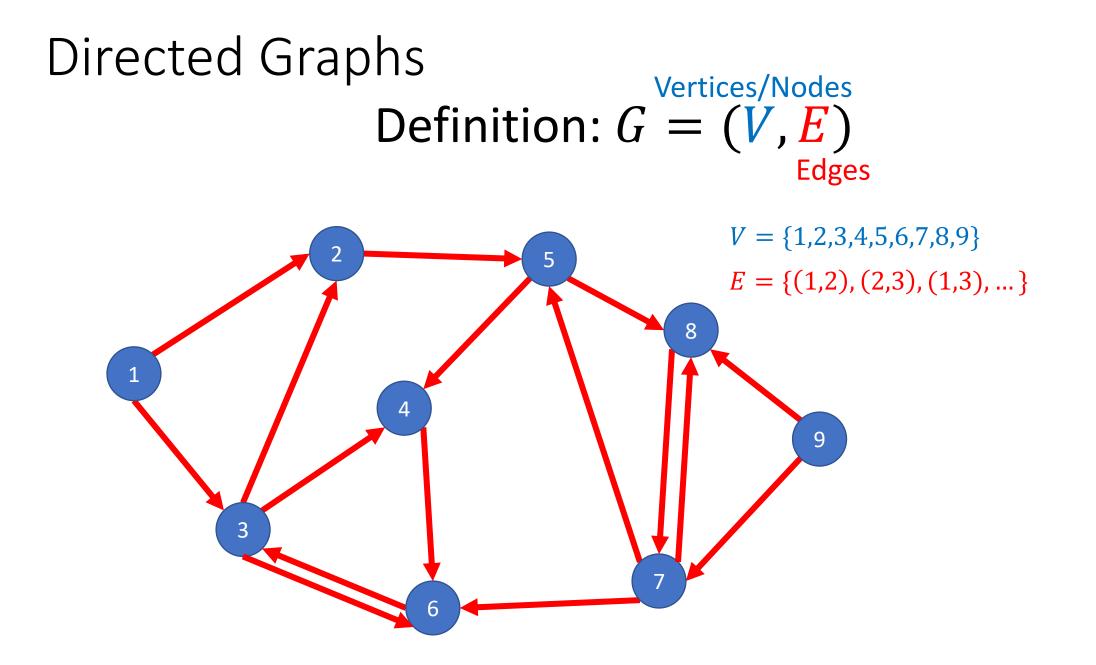
RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) *b*
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

ARPANET

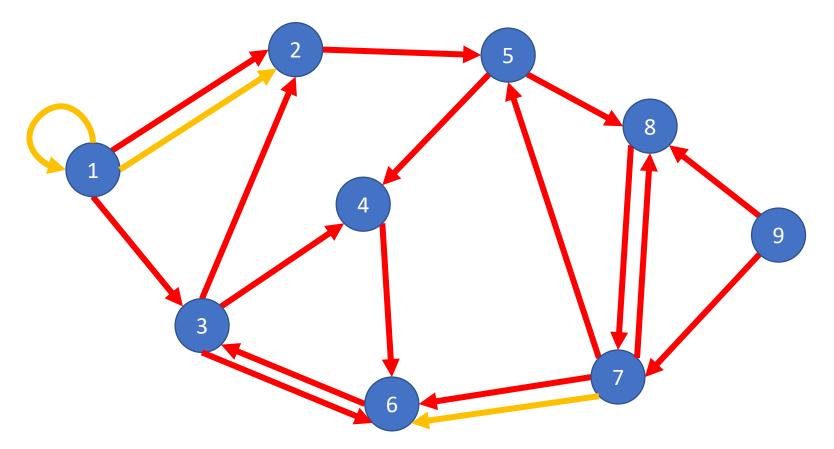


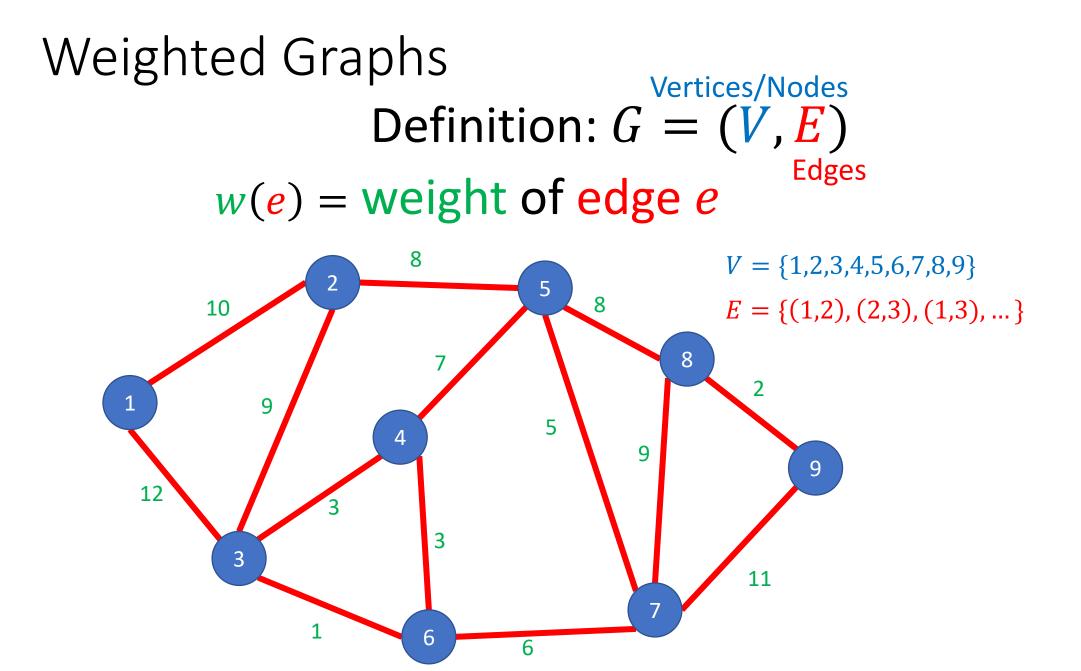




Self-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs



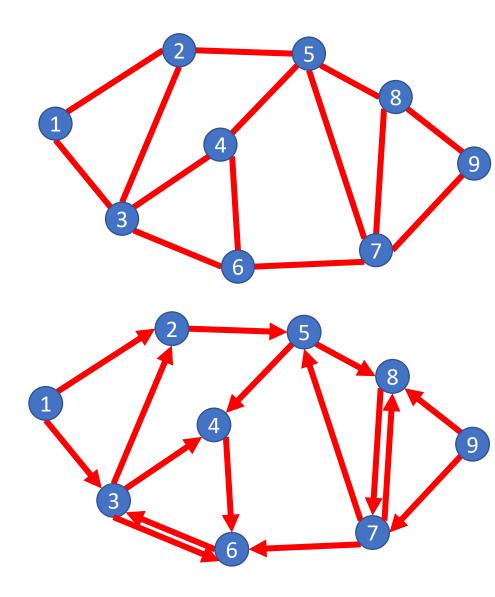


Graph Applications

- For each application below, consider:
 - What are the nodes, what are the edges?
 - Is the graph directed?
 - Is the graph simple?
 - Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

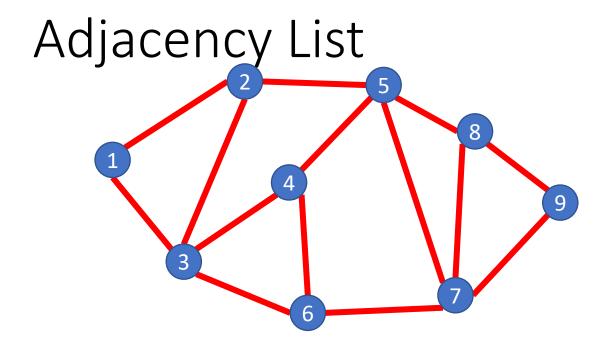
Some Graph Terms

- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- Degree
 - Number of "neighbors" of a vertex
- Indegree
 - Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors



Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

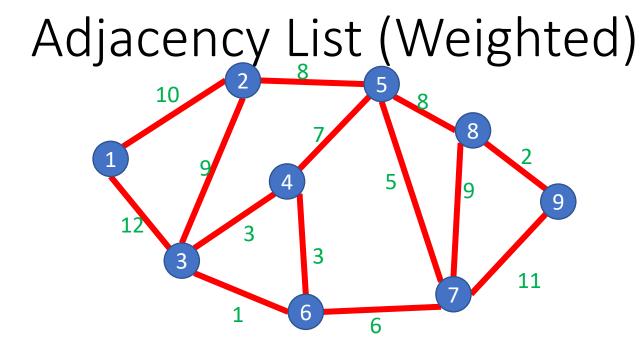


Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(n)$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

1	2	3			
2	1	3	5		
3	1	2	4	6	
4	3	5	6		
5	2	4	7	8	
6	3	4	7		•
7	5	6	8	9	
8	5	7	9		I
9	7	8		•	

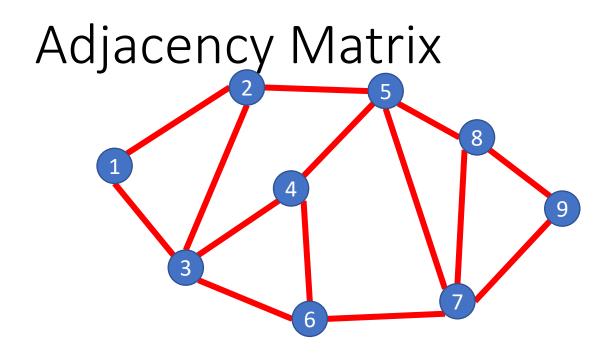


Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(n)$ Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

V	= n
E	= m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•

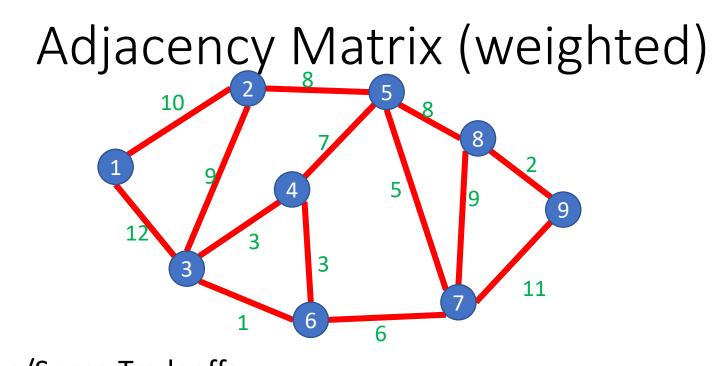


Time/Space Tradeoffs

Space to represent: $\Theta(?)$ Add Edge: $\Theta(?)$ Remove Edge: $\Theta(?)$ Check if Edge Exists: $\Theta(?)$ Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

V	= n
E	= m

	А	В	С	D	E	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	



Time/Space TradeoffsSpace to represent: $\Theta(n^2)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(1)$ Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

V	= n
E	= m

	А	В	С	D	Е	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad