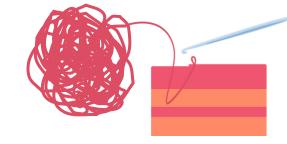
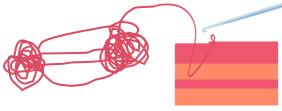
# CSE 332 Winter 2024 Lecture 15: Sorting

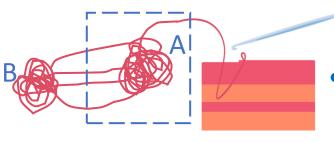

Nathan Brunelle

http://www.cs.uw.edu/332


## Divide And Conquer Sorting

- Divide and Conquer:
  - Recursive algorithm design technique
  - Solve a large problem by breaking it up into smaller versions of the same problem

## Divide and Conquer

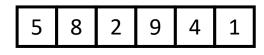



- Base Case:
  - If the problem is "small" then solve directly and return





• Break the problem into subproblem(s), each smaller instances




- Conquer:
  - Solve subproblem(s) recursively
- Combine:
  - Use solutions to subproblems to solve original problem

## Divide and Conquer Template Pseudocode

```
def my_DandC(problem){
    // Base Case
    if (problem.size() <= small_value){
        return solve(problem); // directly solve (e.g., brute force)
    }
    // Divide
    List subproblems = divide(problem);</pre>
```

```
// Conquer
solutions = new List();
for (sub : subproblems){
    subsolution = my_DandC(sub);
    solutions.add(subsolution);
}
// Combine
return combine(solutions);
```



## Merge Sort

- Base Case:
  - If the list is of length 1 or 0, it's already sorted, so just return it

### 5 8 2 9 4 1 • **Divide:**

5

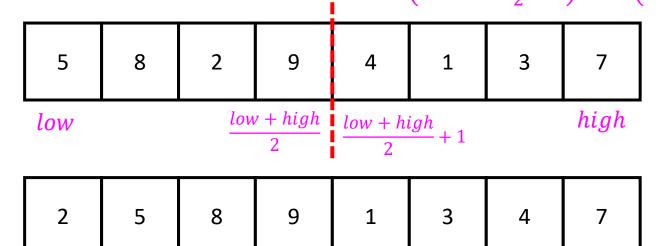
• Split the list into two "sublists" of (roughly) equal length

### 2 5 8 1 4 9 • Conquer:

• Sort both lists recursively

## 2 5 8 1 4 9 1 2 4 5 8 9

#### • Combine:

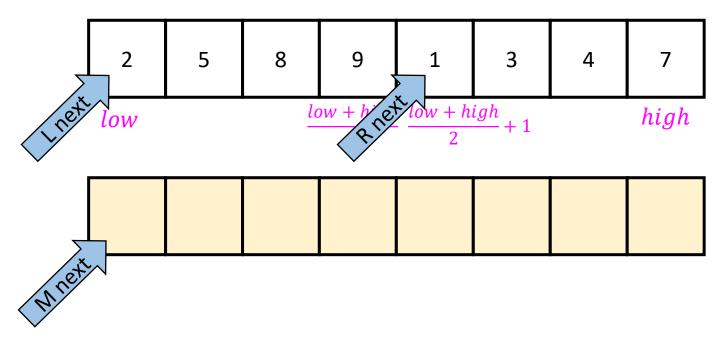

• Merge sorted sublists into one sorted list

### Merge Sort In Action!

Sort between indices *low* and *high* 

Base Case: if *low* == *high* then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges  $\left(low, \frac{low+high}{2}\right)$  and  $\left(\frac{low+high}{2} + 1, high\right)$ 




After Recursion:

low

high

### Merge (the combine part)



Create a new array to merge into, and 3 pointers/indices:

- L\_next: the smallest "unmerged" thing on the left
- R\_next: the smallest "unmerged" thing on the right
- M\_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L\_next and R\_next into M\_next, then advance both M\_next and whichever of L/R was used.

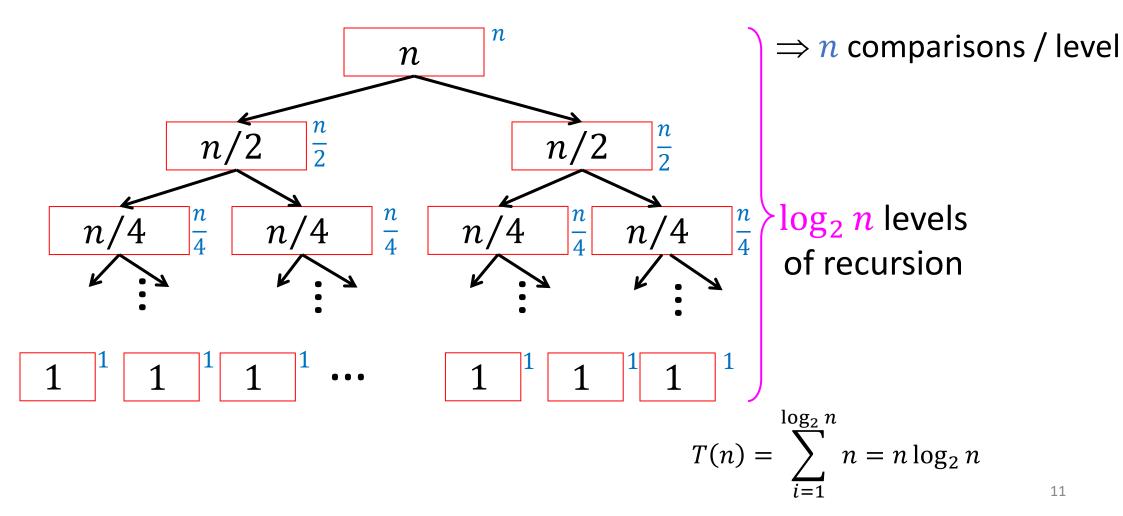
```
Merge Sort Pseudocode
void mergesort(myArray){
      ms helper(myArray, 0, myArray.length());
}
void mshelper(myArray, low, high){
     if (low == high){return;} // Base Case
      mid = (low+high)/2;
      ms helper(low, mid);
      ms helper(mid+1, high);
      merge(myArray, low, mid, high);
```

```
Merge Pseudocode
```

void merge(myArray, low, mid, high){

```
merged = new int[high-low+1]; // or whatever type is in myArray
l next = low;
r next = high;
m_next = 0;
while (I next \leq mid && r next \leq high){
        if (myArray[l_next] <= myArray[r_next]){
                merged[m_next++] = myArray[l_next++];
        else{
                merged[m_next++] = myArray[r_next++];
while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }</pre>
while (r next <= high){ merged[m next++] = myArray[r next++]; }
for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}</pre>
```

## Analyzing Merge Sort


- 1. Identify time required to Divide and Combine
- 2. Identify all subproblems and their sizes
- 3. Use recurrence relation to express recursive running time
- 4. Solve and express running time asymptotically
- **Divide:** 0 comparisons
- Conquer: recursively sort two lists of size  $\frac{n}{2}$
- Combine: n comparisons
- Recurrence:

$$T(n) = 0 + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$$
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Red box represents a problem instance

Blue value represents time spent at that level of recursion

$$T(n) = 2T(\frac{n}{2}) + n$$



### Properties of Merge Sort

- Worst Case Running time:
  - $\Theta(n \log n)$
- In-Place?
  - No!
- Adaptive?
  - No!
- Stable?
  - Yes!
  - As long as in a tie you always pick l\_next

### Quicksort

- Like Mergesort:
  - Divide and conquer
  - $O(n \log n)$  run time (kind of...)
- Unlike Mergesort:
  - Divide step is the "hard" part
  - *Typically* faster than Mergesort

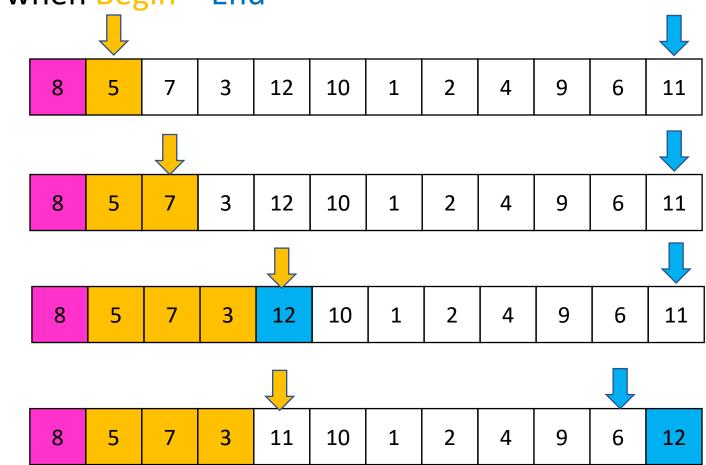
### Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

## Partition (Divide step)

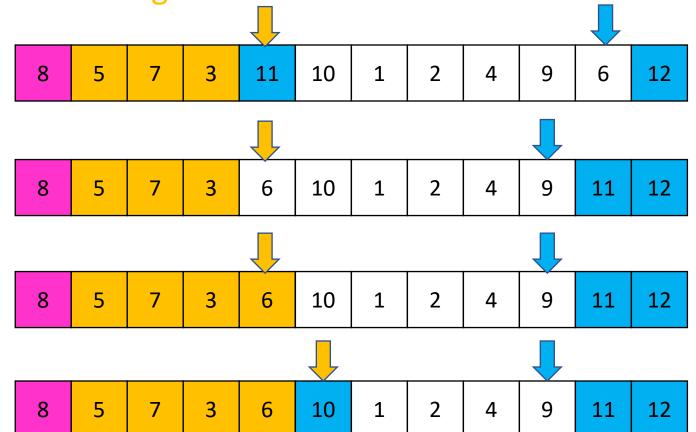
### Given: a list, a pivot p Start: unordered list


| 8 | 5 | 7 | 3 | 12 | 10 | 1 | 2 | 4 | 9 | 6 | 11 |  |
|---|---|---|---|----|----|---|---|---|---|---|----|--|
|---|---|---|---|----|----|---|---|---|---|---|----|--|

Goal: All elements < p on left, all > p on right

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left


Done when **Begin** = **End** 

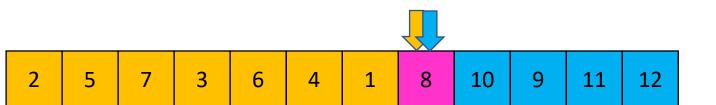


If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left



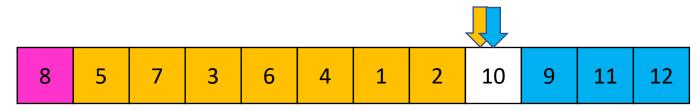



If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

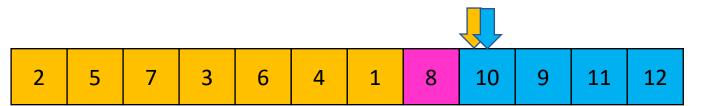
Done when **Begin** = **End** 

Case 1: meet at element < p


Swap *p* with pointer position (2 in this case)



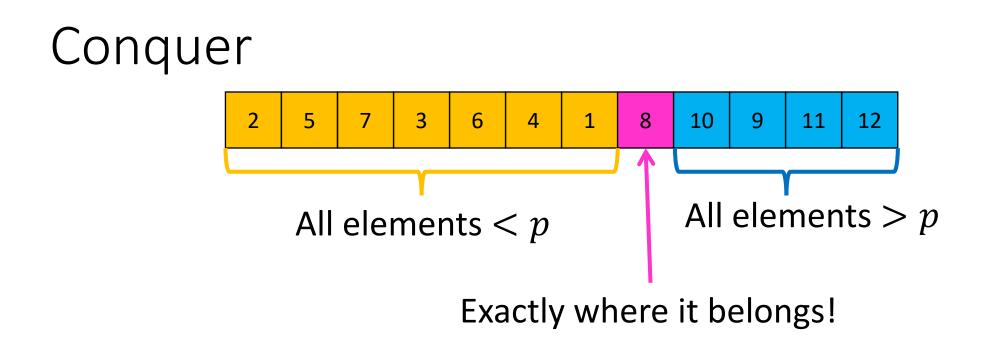
If Begin value < p, move Begin right


Else swap Begin value with End value, move End Left

Done when **Begin** = **End** 



Case 2: meet at element > p


Swap p with value to the left (2 in this case)



### Partition Summary

- 1. Put *p* at beginning of list
- 2. Put a pointer (Begin) just after *p*, and a pointer (End) at the end of the list
- 3. While Begin < End:
  - 1. If Begin value < p, move Begin right
  - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element : Swap <math>p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left



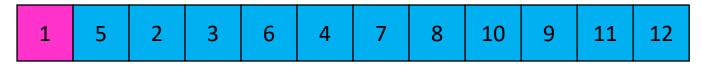


#### Recursively sort Left and Right sublists

### Quicksort Run Time (Best)

### If the pivot is always the median:





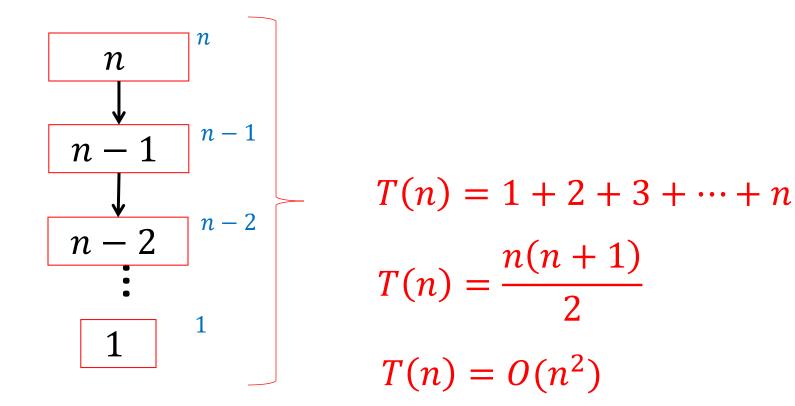

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

### Quicksort Run Time (Worst)

### If the pivot is always at the extreme:






Then we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$ 

### Quicksort Run Time (Worst) T(n) = T(n-1) + n



### Quicksort on a (nearly) Sorted List

### First element always yields unbalanced pivot

So we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$ 

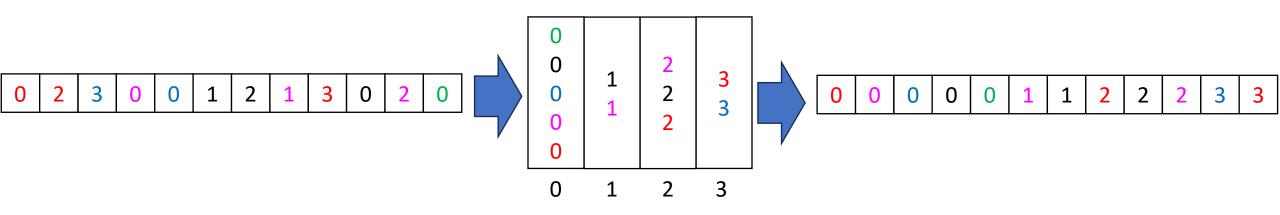
### Good Pivot

- What makes a good Pivot?
  - Roughly even split between left and right
  - Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
  - Pick a random value as a pivot
  - Pick the middle of 3 random values as the pivot

### Properties of Quick Sort

- Worst Case Running time:
  - $\Theta(n^2)$
  - But  $\Theta(n \log n)$  average! And typically faster than mergesort!
- In-Place?
  - ....Debatable
- Adaptive?
  - No!
- Stable?
  - No!

## Improving Running time


- Recall our definition of the sorting problem:
  - Input:
    - An array A of items
    - A comparison function for these items
      - Given two items x and y, we can determine whether x < y, x > y, or x = y
  - Output:
    - A permutation of A such that if  $i \leq j$  then  $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than n log n asymptotically.
- Observation:
  - Sometimes there might be ways to determine the position of values without comparisons!

## "Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
  - Examples:
    - The list contains only positive integers less than k
    - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
  - Examples:
    - Running time might be  $\Theta(k \cdot n)$  where k is the range/count of values

### BucketSort

- Assumes the array contains integers between 0 and k 1 (or some other small range)
- Idea:
  - Use each value as an index into an array of size k
  - Add the item into the "bucket" at that index (e.g. linked list)
  - Get sorted array by "appending" all the buckets

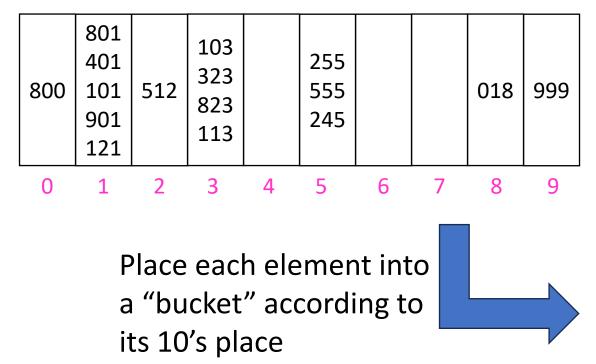


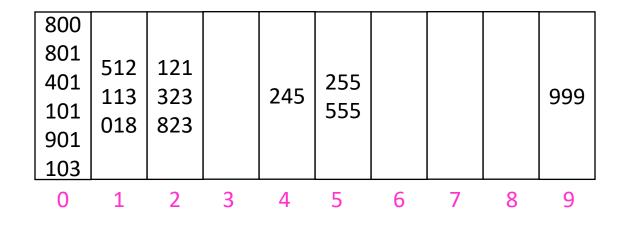
### BucketSort Running Time

- Create array of k buckets
  - Either  $\Theta(k)$  or  $\Theta(1)$  depending on some things...
- Insert all n things into buckets
  - $\Theta(n)$
- Empty buckets into an array
  - $\Theta(n+k)$
- Overall:
  - $\Theta(n+k)$
- When is this better than mergesort?

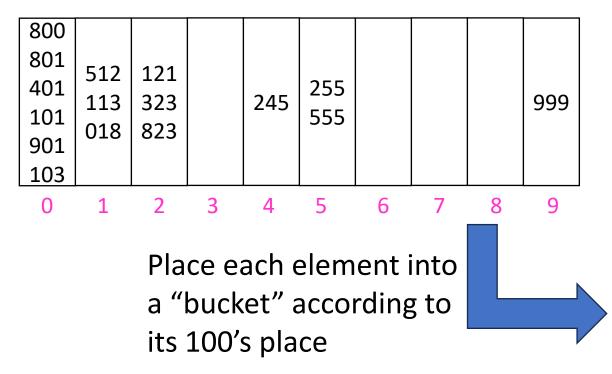
### Properties of BucketSort

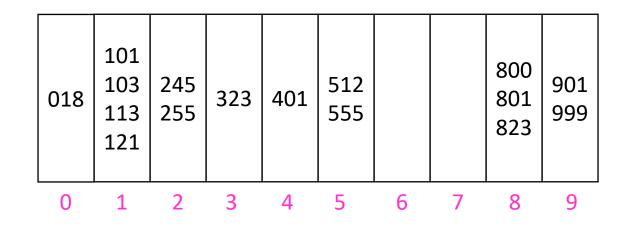
- In-Place?
  - No
- Adaptive?
  - No
- Stable?
  - Yes!


- Radix: The base of a number system
  - We'll use base 10, most implementations will use larger bases
- Idea:
  - BucketSort by each digit, one at a time, from least significant to most significant

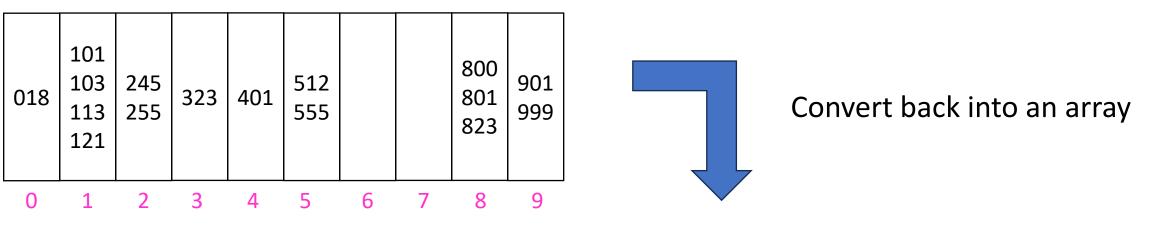

| 103 | 801 | 401 | 323 | 255 | 823 | 999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  |

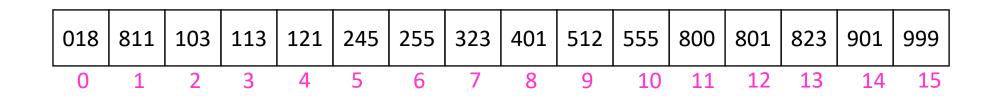
Place each element into a "bucket" according to its 1's place


| 800 | 801<br>401<br>101<br>901<br>121 | 512 | 103<br>323<br>823<br>113 |   | 255<br>555<br>245 |   |   | 018 | 999 |
|-----|---------------------------------|-----|--------------------------|---|-------------------|---|---|-----|-----|
| 0   | 1                               | 2   | 3                        | 4 | 5                 | 6 | 7 | 8   | 9   |


- Radix: The base of a number system
  - We'll use base 10, most implementations will use larger bases
- Idea:
  - BucketSort by each digit, one at a time, from least significant to most significant



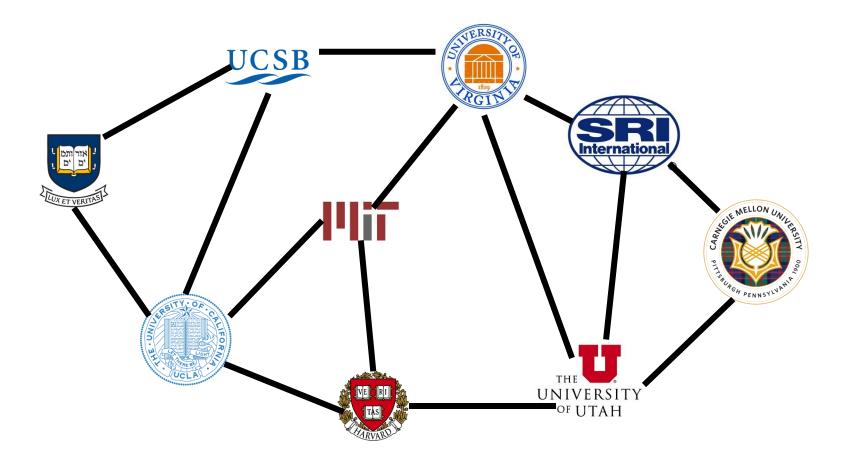


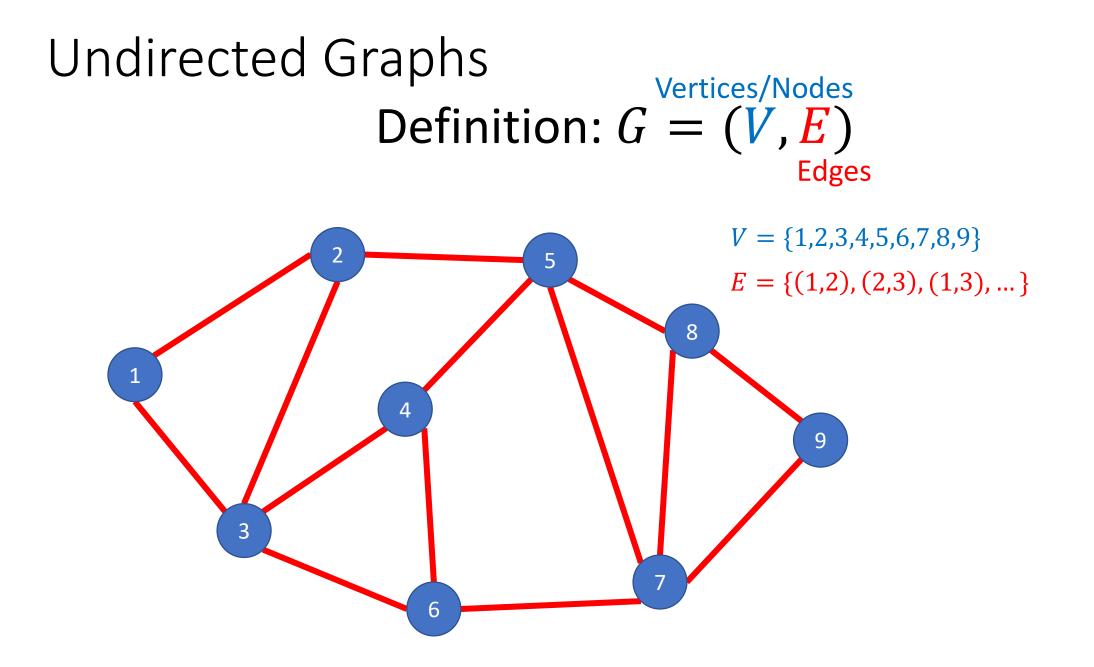


- Radix: The base of a number system
  - We'll use base 10, most implementations will use larger bases
- Idea:
  - BucketSort by each digit, one at a time, from least significant to most significant

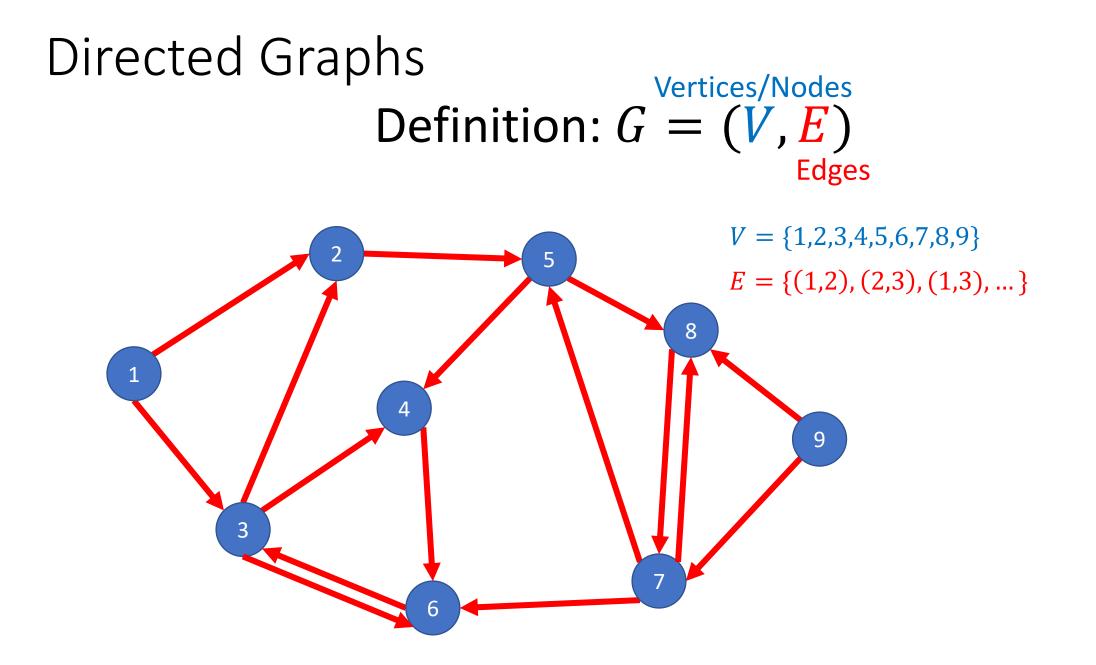




- Radix: The base of a number system
  - We'll use base 10, most implementations will use larger bases
- Idea:
  - BucketSort by each digit, one at a time, from least significant to most significant

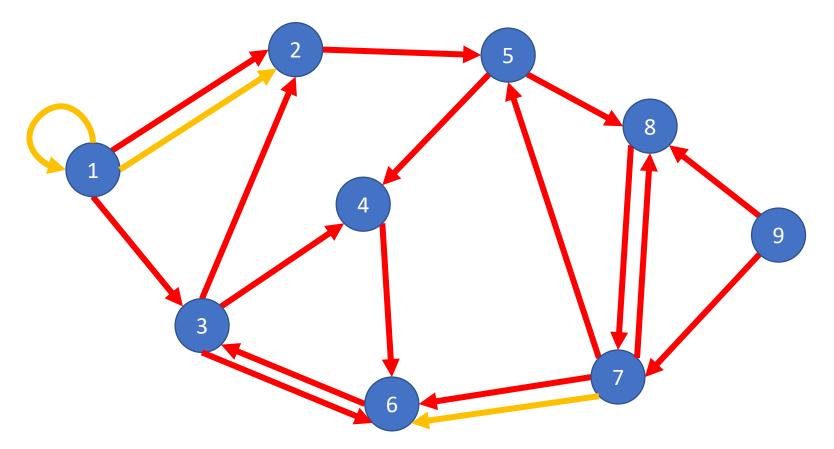


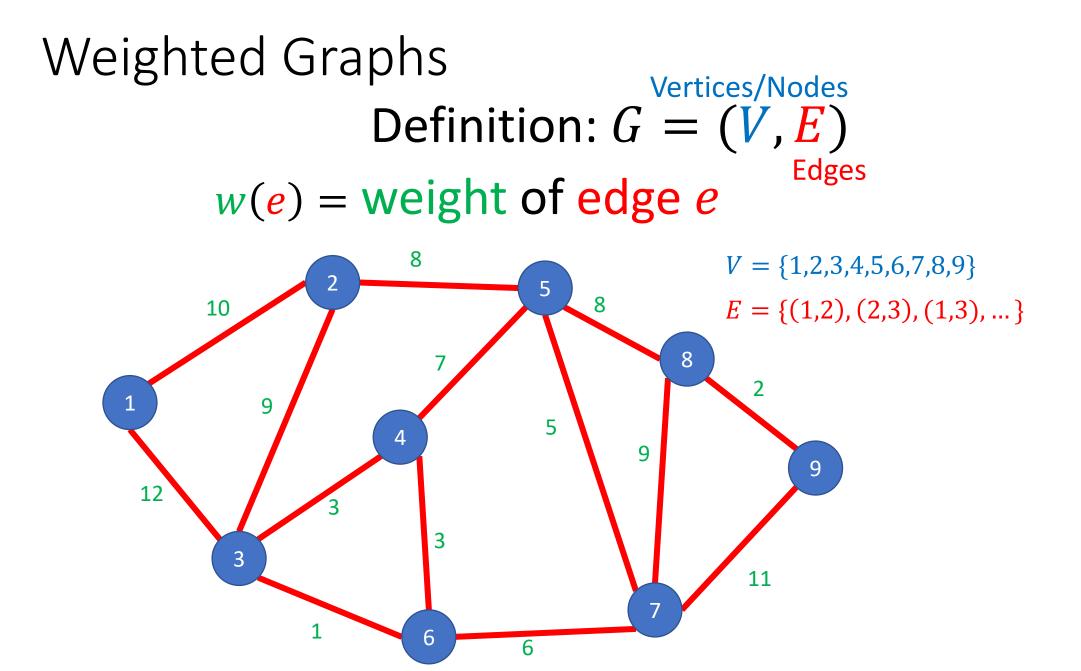





# RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) *b*
- BucketSort all n things using b buckets
  - $\Theta(n+k)$
- Repeat once per each digit
  - $\log_b m$  iterations
- Overall:
  - $\Theta(n \log_b m + b \log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

#### ARPANET



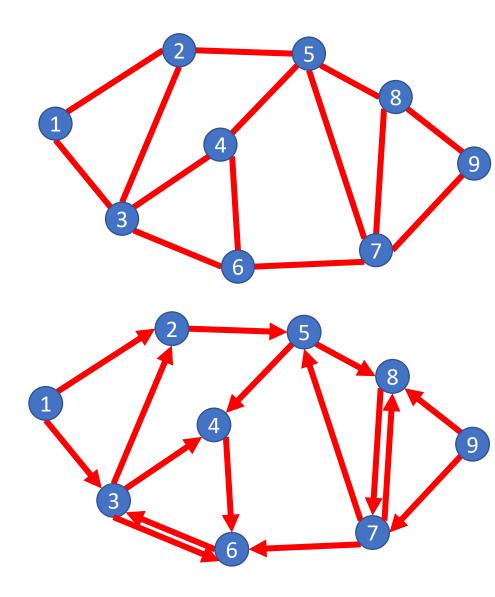






### Self-Edges and Duplicate Edges

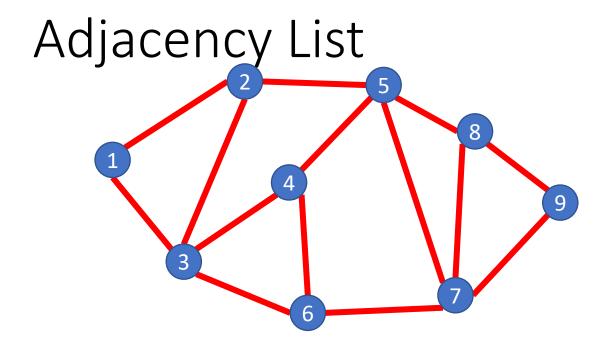
Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs






## Graph Applications

- For each application below, consider:
  - What are the nodes, what are the edges?
  - Is the graph directed?
  - Is the graph simple?
  - Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

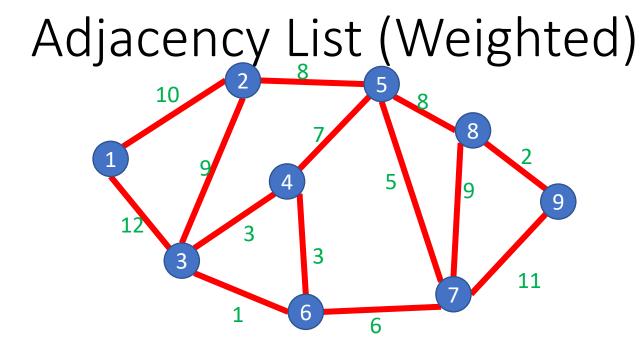

# Some Graph Terms

- Adjacent/Neighbors
  - Nodes are adjacent/neighbors if they share an edge
- Degree
  - Number of "neighbors" of a vertex
- Indegree
  - Number of incoming neighbors
- Outdegree
  - Number of outgoing neighbors



### Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
  - Add Edge
  - Remove Edge
  - Check if Edge Exists
  - Get Neighbors (incoming)
  - Get Neighbors (outgoing)

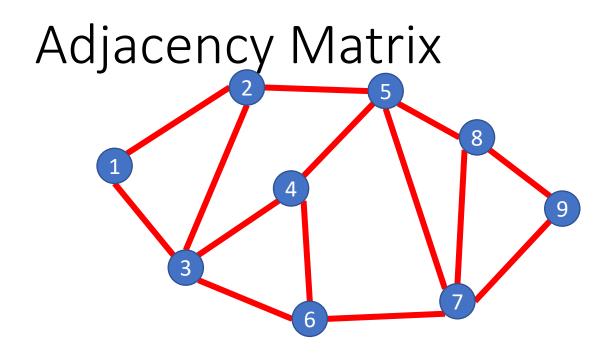



**Time/Space Tradeoffs** 

Space to represent:  $\Theta(n + m)$ Add Edge:  $\Theta(1)$ Remove Edge:  $\Theta(1)$ Check if Edge Exists:  $\Theta(n)$ Get Neighbors (incoming):  $\Theta(n + m)$ Get Neighbors (outgoing):  $\Theta(\deg(v))$ 

$$|V| = n$$
$$|E| = m$$

| 1 | 2 | 3 |   |   |   |
|---|---|---|---|---|---|
| 2 | 1 | 3 | 5 |   |   |
| 3 | 1 | 2 | 4 | 6 |   |
| 4 | 3 | 5 | 6 |   |   |
| 5 | 2 | 4 | 7 | 8 |   |
| 6 | 3 | 4 | 7 |   | • |
| 7 | 5 | 6 | 8 | 9 |   |
| 8 | 5 | 7 | 9 |   | I |
| 9 | 7 | 8 |   | • |   |




**Time/Space Tradeoffs** 

Space to represent:  $\Theta(n + m)$ Add Edge:  $\Theta(1)$ Remove Edge:  $\Theta(1)$ Check if Edge Exists:  $\Theta(n)$ Get Neighbors (incoming):  $\Theta(?)$ Get Neighbors (outgoing):  $\Theta(?)$ 

| V | = n |
|---|-----|
| E | = m |

| 1 | 2 | 3 |   |   |
|---|---|---|---|---|
| 2 | 1 | 3 | 5 |   |
| 3 | 1 | 2 | 4 | 6 |
| 4 | 3 | 5 | 6 |   |
| 5 | 2 | 4 | 7 | 8 |
| 6 | 3 | 4 | 7 |   |
| 7 | 5 | 6 | 8 | 9 |
| 8 | 5 | 7 | 9 |   |
| 9 | 7 | 8 |   | • |



**Time/Space Tradeoffs** 

Space to represent:  $\Theta(?)$ Add Edge:  $\Theta(?)$ Remove Edge:  $\Theta(?)$ Check if Edge Exists:  $\Theta(?)$ Get Neighbors (incoming):  $\Theta(?)$ Get Neighbors (outgoing):  $\Theta(?)$ 

| V | = n |
|---|-----|
| E | = m |

|   | А | В | С | D | E | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|---|
| А |   | 1 | 1 |   |   |   |   |   |   |
| В | 1 |   | 1 |   | 1 |   |   |   |   |
| С | 1 | 1 |   | 1 |   | 1 |   |   |   |
| D |   |   | 1 |   | 1 | 1 |   |   |   |
| Е |   | 1 |   | 1 |   |   | 1 | 1 |   |
| F |   |   | 1 | 1 |   |   | 1 |   |   |
| G |   |   |   |   | 1 | 1 |   | 1 | 1 |
| Н |   |   |   |   | 1 |   | 1 |   | 1 |
| I |   |   |   |   |   |   | 1 | 1 |   |



Time/Space TradeoffsSpace to represent:  $\Theta(n^2)$ Add Edge:  $\Theta(1)$ Remove Edge:  $\Theta(1)$ Check if Edge Exists:  $\Theta(1)$ Get Neighbors (incoming):  $\Theta(n)$ Get Neighbors (outgoing):  $\Theta(n)$ 

| V | = n |
|---|-----|
| E | = m |

|   | А | В | С | D | Е | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|---|
| А |   | 1 | 1 |   |   |   |   |   |   |
| В | 1 |   | 1 |   | 1 |   |   |   |   |
| С | 1 | 1 |   | 1 |   | 1 |   |   |   |
| D |   |   | 1 |   | 1 | 1 |   |   |   |
| Е |   | 1 |   | 1 |   |   | 1 | 1 |   |
| F |   |   | 1 | 1 |   |   | 1 |   |   |
| G |   |   |   |   | 1 | 1 |   | 1 | 1 |
| Н |   |   |   |   | 1 |   | 1 |   | 1 |
| I |   |   |   |   |   |   | 1 | 1 |   |

#### Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad