CSE 332 Winter 2024 Lecture 16: Radix Sort, Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

"Linear Time" Sorting Algorithms

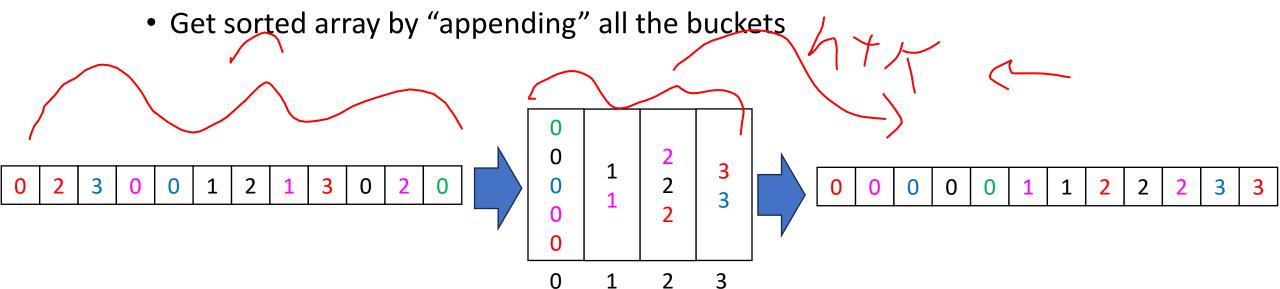
- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
 - Examples:
 - The list contains only positive integers less than k
 - The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
 - Examples:
 - Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and k-1 (or some other small range)

• Idea:

- Use each value as an index into an array of size k
- Add the item into the "bucket" at that index (e.g. linked list)



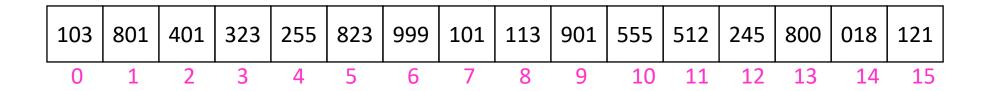
BucketSort Running Time

- Create array of k buckets
 - Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
 - $\Theta(n)$
- Empty buckets into an array
 - $\Theta(n+k)$
- Overall:
 - $\Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
 - No
- Adaptive?
 - No
- Stable?
 - Yes!

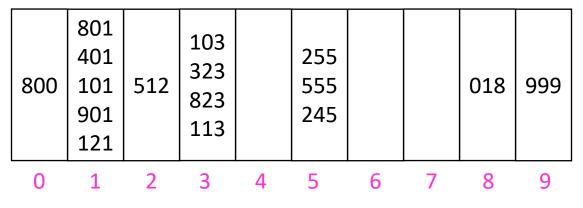
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant



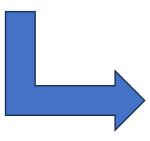
Place each element into a "bucket" according to its 1's place

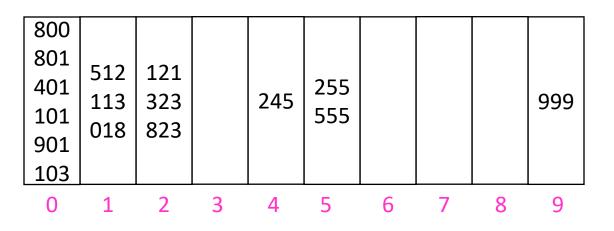
800	801 401 101 901 121	512	103 323 823 113		255 555 245			018	999
0	1	2	3	4	5	6	7	8	9

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

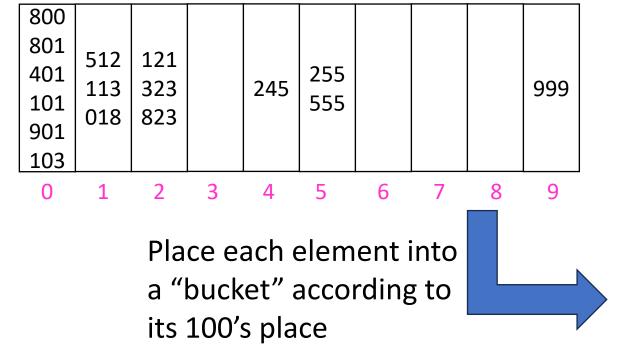


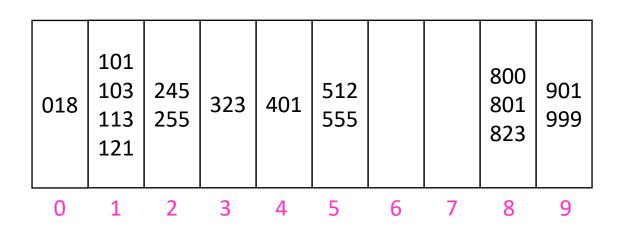
Place each element into a "bucket" according to its 10's place



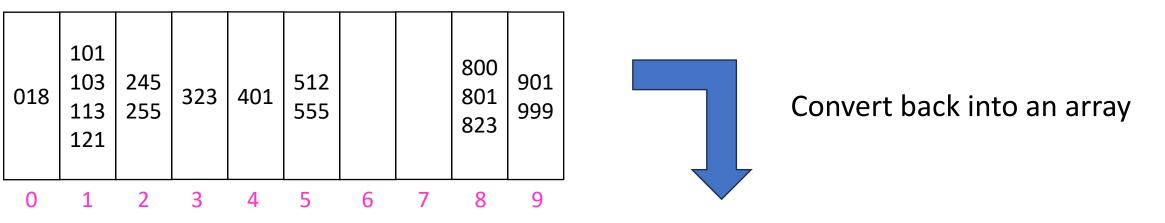


- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant





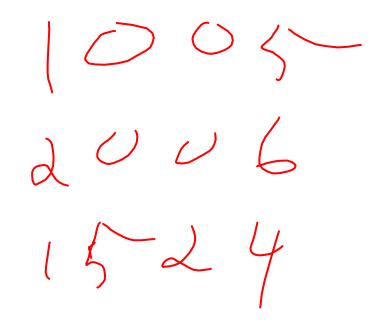
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant



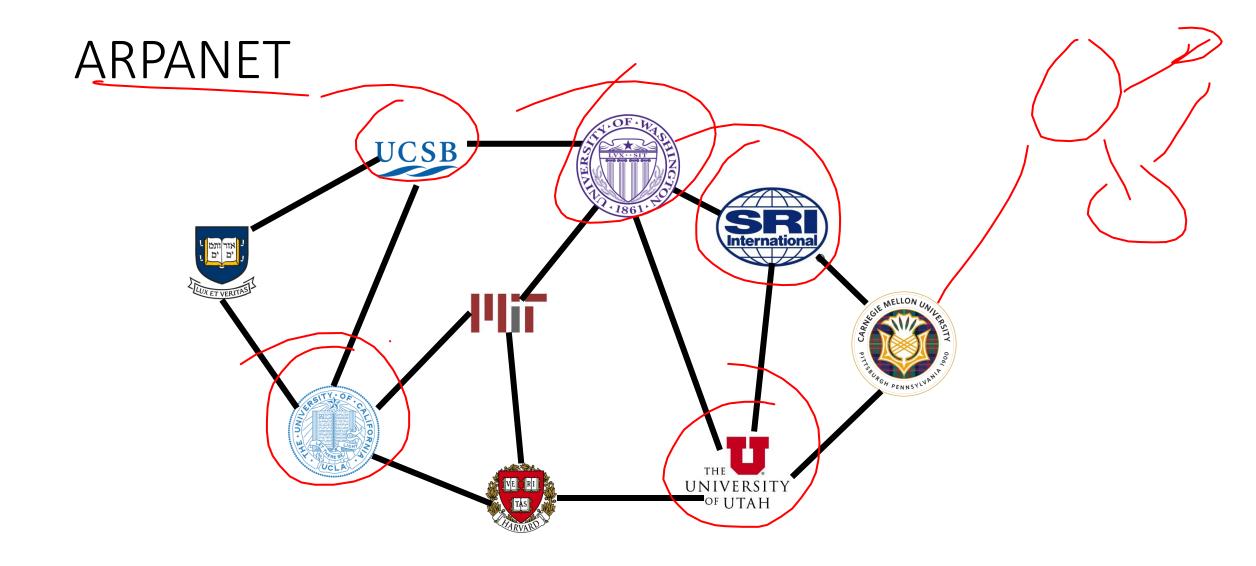
018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
 - $\Theta(n+k)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n \log_b m + b \log_b m) \not\subset$
- ullet In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

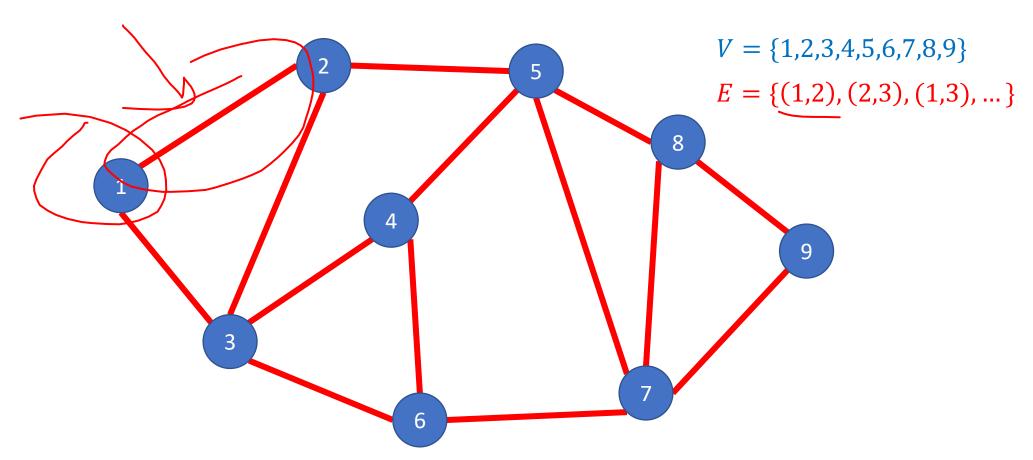


1005



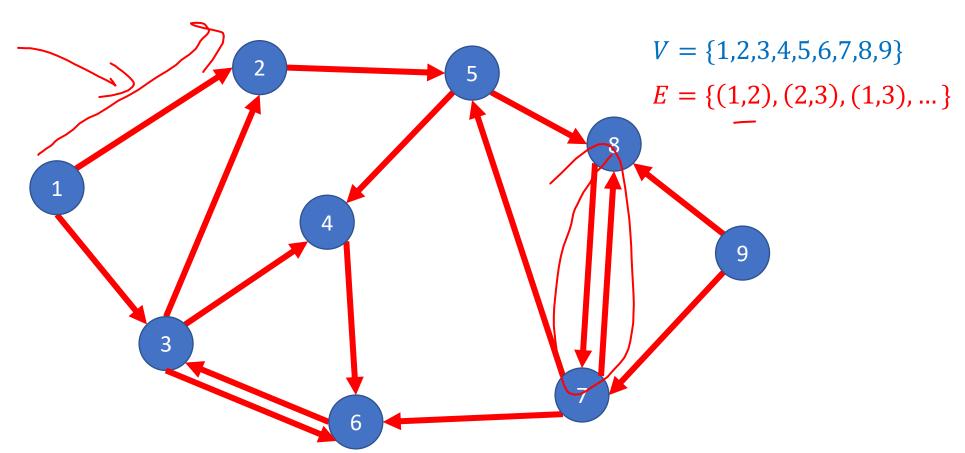
Undirected Graphs

Definition: G = (V, E)Edges



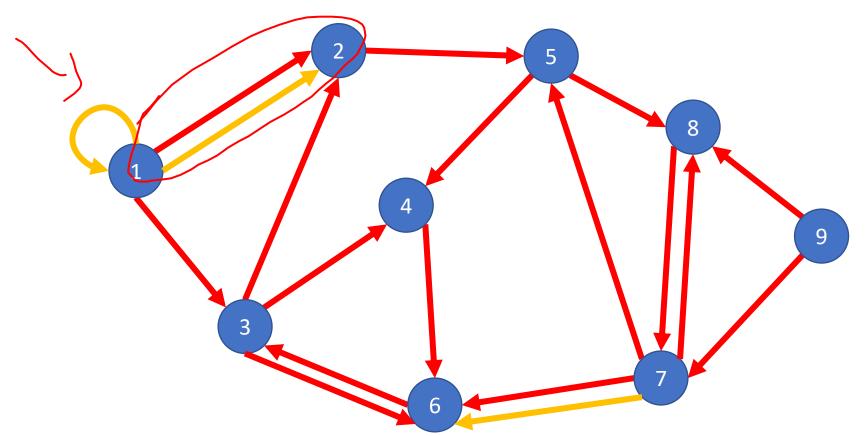
Directed Graphs

Definition:
$$G = (V, E)$$
Edges



Self-Edges and Duplicate Edges

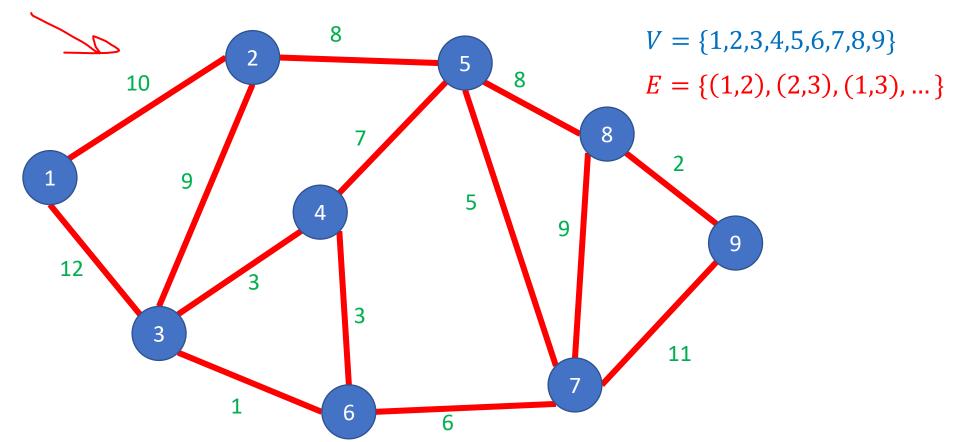
Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs



Weighted Graphs

Definition: G = (V, E)Edges

w(e) = weight of edge e



Graph Applications

- For each application below, consider:
 - What are the nodes, what are the edges?
 - Is the graph directed?
 - Is the graph simple?
 - Is the graph weighted?

Facebook friends

- Nodes: Accounts, Edges: Friendship
- Undirected
- Simple
- maybe

Twitter followers

- Nodes: Accounts, Edges: following
- Directed
- Simple
- maybe

Java inheritance

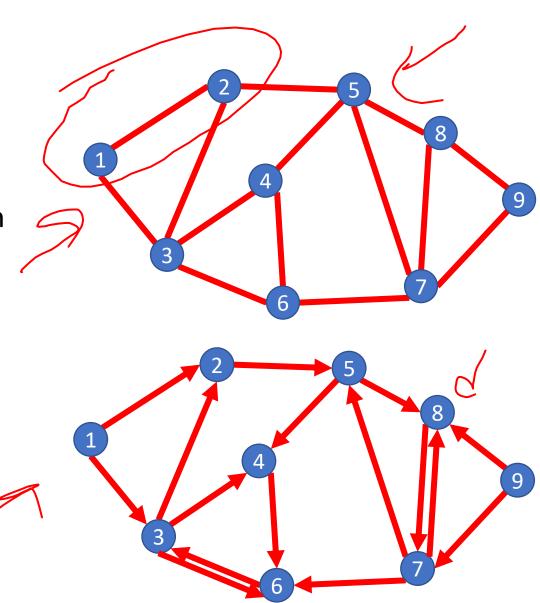
- Nodes: Classes, Edges: extends, implements
- Directed
- Simple
- Unweights

Airline Routes

- Nodes: Cities, edges: flights
- Directed
- Non-simple
- weight

Some Graph Terms

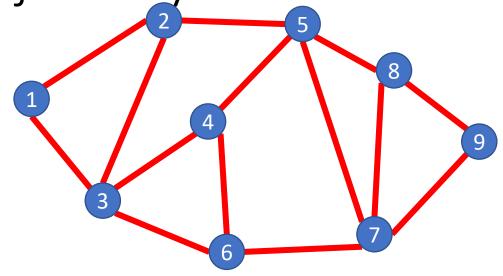
- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- Degree
 - Number of "neighbors" of a vertex
- Indegree
 Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors



Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

Adjacency List



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(n)$

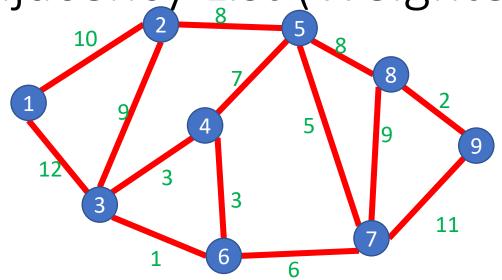
Get Neighbors (incoming): $\Theta(n+m)$

Get Neighbors (outgoing): $\Theta(\deg(v))$

V	=	n
E	=	m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•

Adjacency List (Weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(n)$

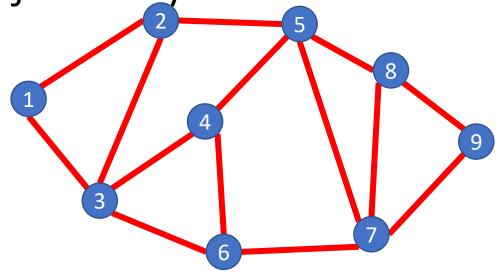
Get Neighbors (incoming): $\Theta(?)$

Get Neighbors (outgoing): $\Theta(?)$

V	_	n
		m

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		-

Adjacency Matrix



Time/Space Tradeoffs

Space to represent: $\Theta(?)$

Add Edge: $\Theta(?)$

Remove Edge: $\Theta(?)$

Check if Edge Exists: $\Theta(?)$

Get Neighbors (incoming): $\Theta(?)$

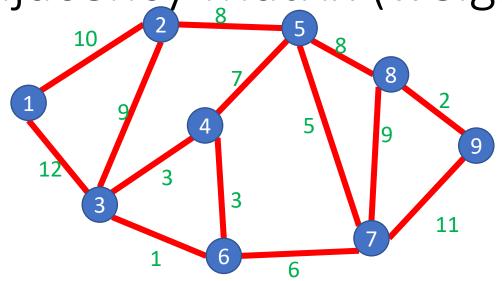
Get Neighbors (outgoing): $\Theta(?)$

$$|V| = n$$

$$|E| = m$$

	A	В	С	D	Ε	F	G	Н	1
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

Adjacency Matrix (weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(1)$

Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

$$|V| = n$$

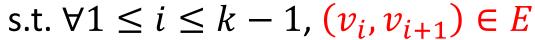
	А	В	С	D	E	F	G	Н	1
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

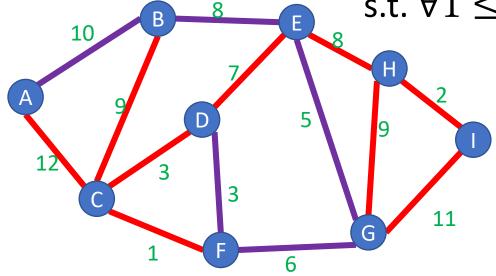
Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path

A sequence of nodes $(v_1, v_2, ..., v_k)$





Simple Path:

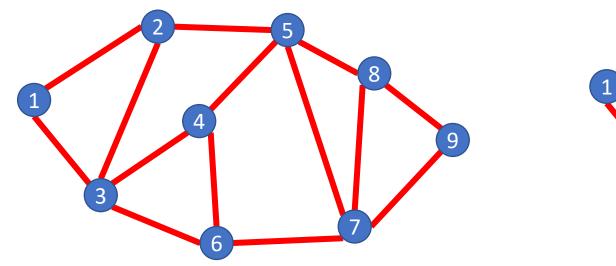
A path in which each node appears at most once

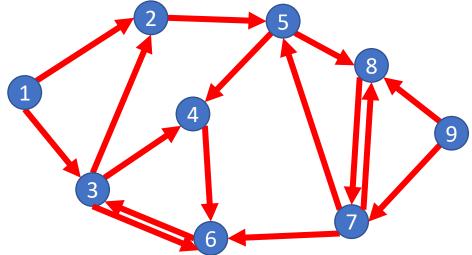
Cycle:

A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

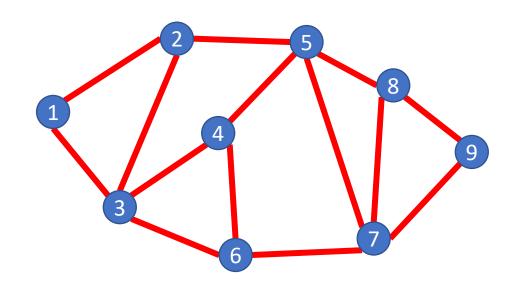
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



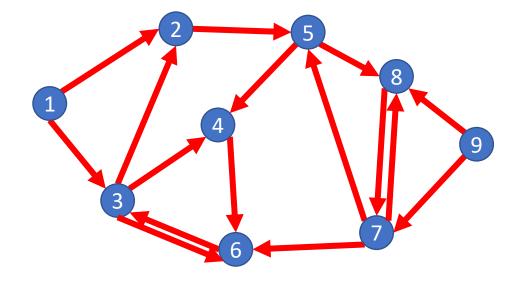


Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



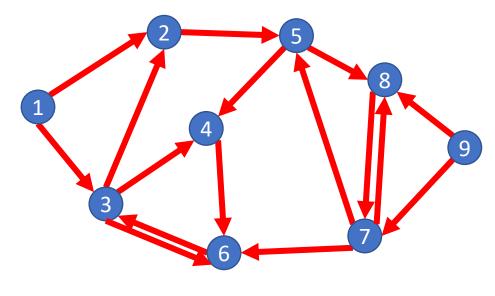
Connected



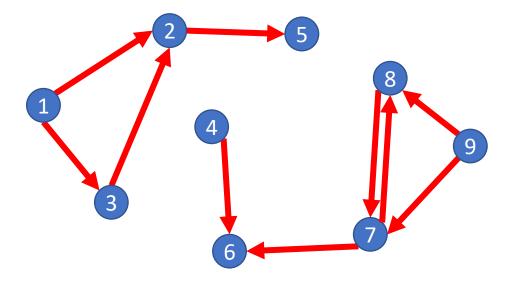
Not (strongly) Connected

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges



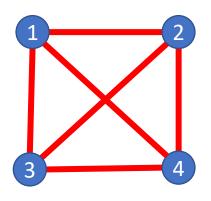
Weakly Connected



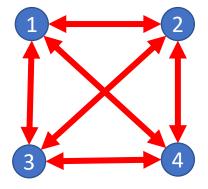
Weakly Connected

Definition: Complete Graph

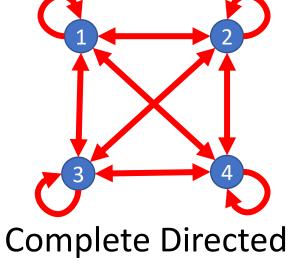
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2



Complete **Undirected Graph**



Complete **Directed Graph**



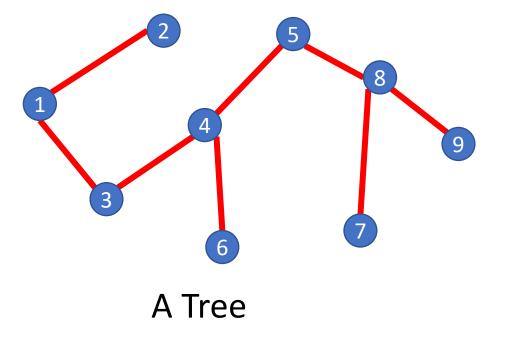
Non-simple Graph

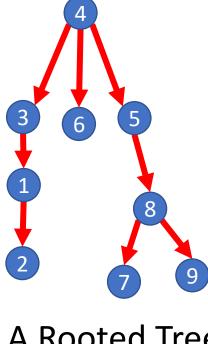
Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: |V|(|V|-1)
 - Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V|-1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

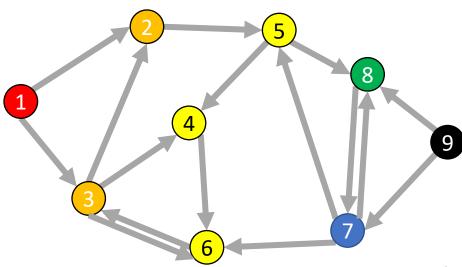




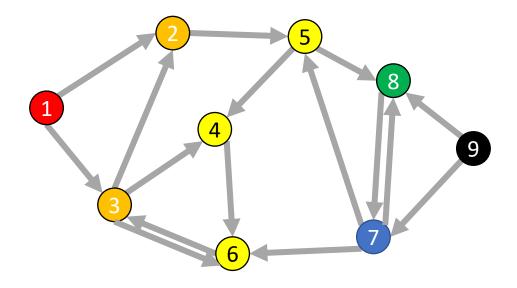
A Rooted Tree

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?



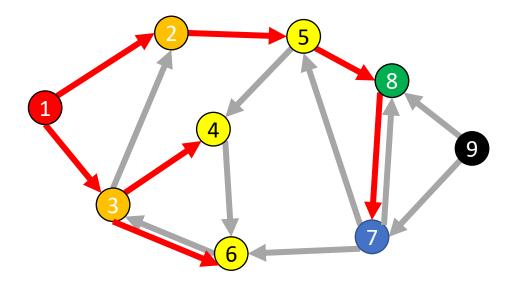
BFS



Running time: $\Theta(|V| + |E|)$

```
void bfs(graph, s){
      found = new Queue();
      found.enqueue(s);
      mark s as "visited";
      While (!found.isEmpty()){
            current = found.dequeue();
            for (v : neighbors(current)){
                   if (! v marked "visited"){
                         mark v as "visited";
                         found.enqueue(v);
```

Shortest Path (unweighted)



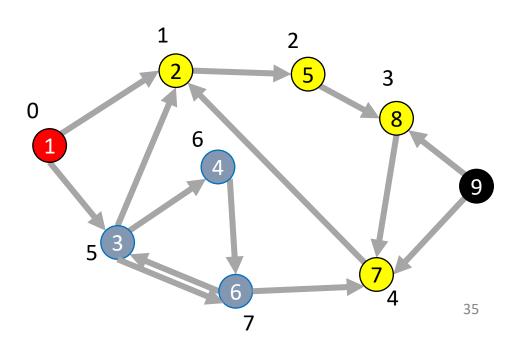
Idea: when it's seen, remember its "layer" depth!

```
int shortestPath(graph, s, t){
       found = new Queue();
       layer = 0;
       found.enqueue(s);
       mark s as "visited";
       While (!found.isEmpty()){
               current = found.dequeue();
               layer = depth of current;
               for (v : neighbors(current)){
                      if (! v marked "visited"){
                              mark v as "visited";
                              depth of v = layer + 1;
                              found.enqueue(v);
       return depth of t;
                                              33
```

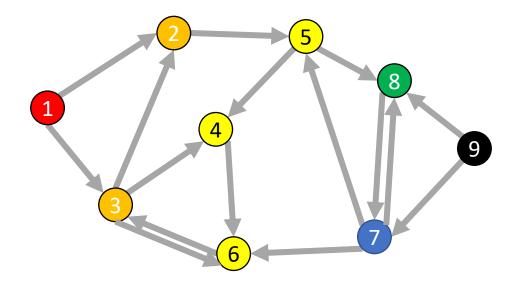
Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.



DFS (non-recursive)



Running time: $\Theta(|V| + |E|)$

```
void dfs(graph, s){
      found = new Stack();
      found.pop(s);
      mark s as "visited";
      While (!found.isEmpty()){
             current = found.pop();
             for (v : neighbors(current)){
                   if (! v marked "visited"){
                          mark v as "visited";
                          found.push(v);
```

DFS Recursively (more common)

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```

