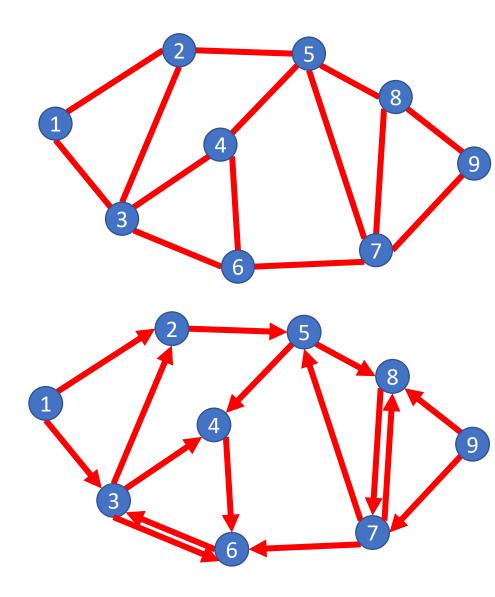
CSE 332 Autumn 2023 Lecture 18: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

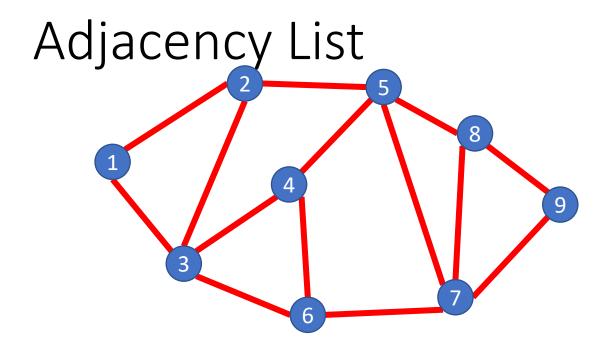
Some Graph Terms

- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- Degree
 - Number of "neighbors" of a vertex
- Indegree
 - Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors



Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

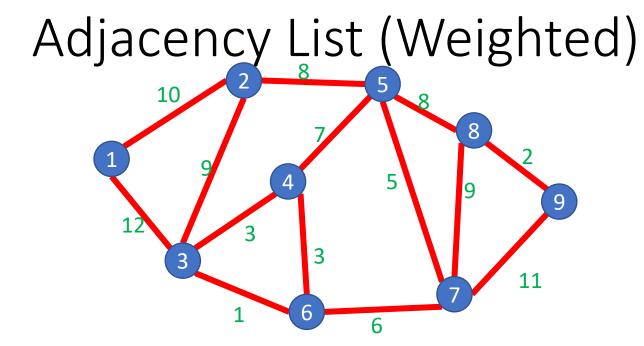


Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(\deg(v))$ Check if Edge Exists: $\Theta(\deg(v))$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		1

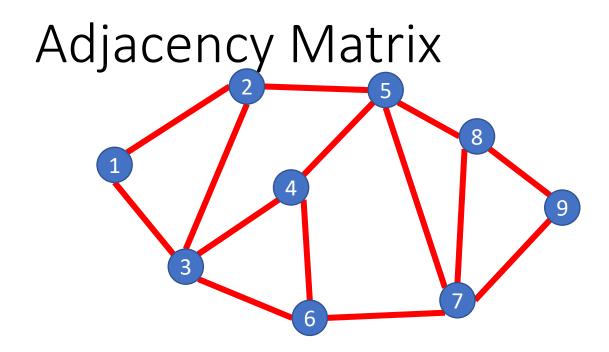


Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(\deg(v))$ Check if Edge Exists: $\Theta(\deg(v))$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		-

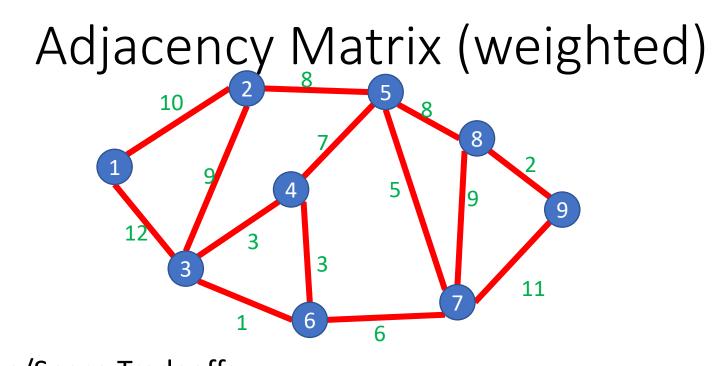


Time/Space Tradeoffs

Space to represent: $\Theta(?)$ Add Edge: $\Theta(?)$ Remove Edge: $\Theta(?)$ Check if Edge Exists: $\Theta(?)$ Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

V	= n
E	= m

	А	В	С	D	Ε	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	



Time/Space TradeoffsSpace to represent: $\Theta(n^2)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(1)$ Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

V	= n
E	= m

	А	В	С	D	Е	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path A sequence of nodes $(v_1, v_2, ..., v_k)$ s.t. $\forall 1 \le i \le k - 1$, $(v_i, v_{i+1}) \in E$ 10 5 3 11 1 6

Simple Path:

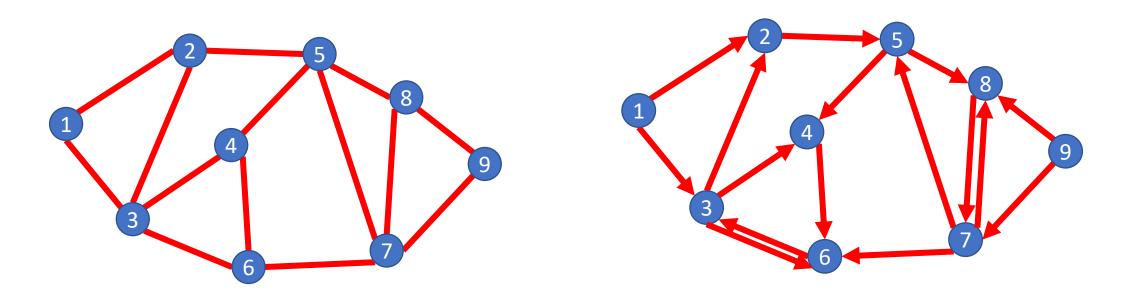
A path in which each node appears at most once

Cycle:

A path which starts and ends in the same place

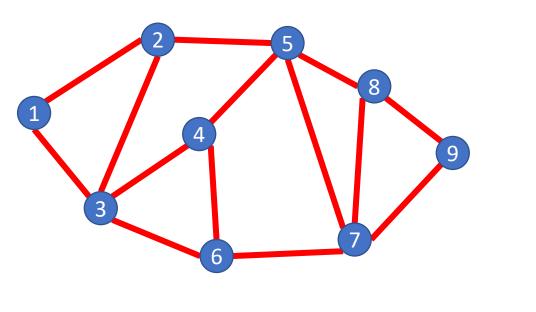
Definition: (Strongly) Connected Graph

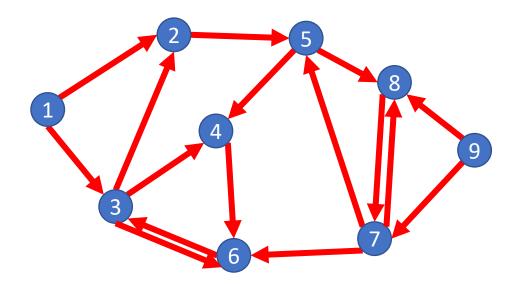
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



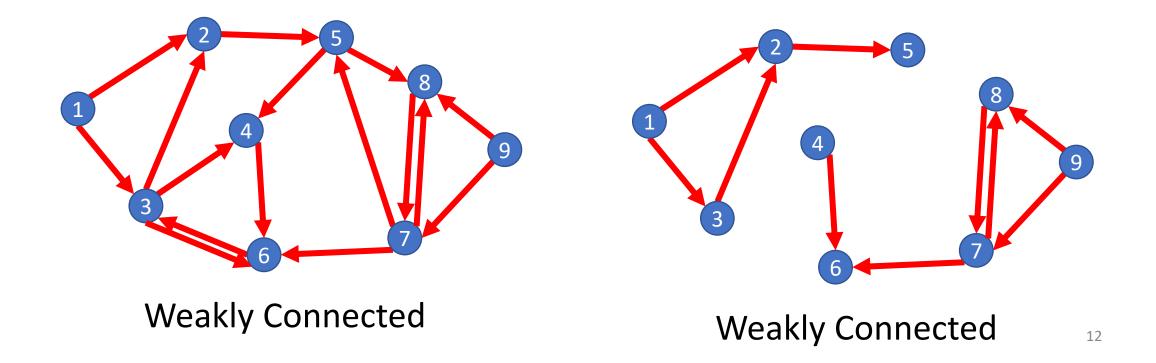


Not (strongly) Connected

Connected

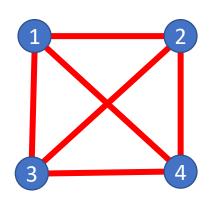
Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges



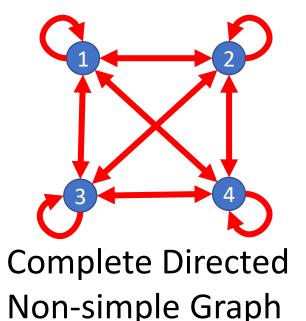
Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2



Complete Undirected Graph

Complete Directed Graph

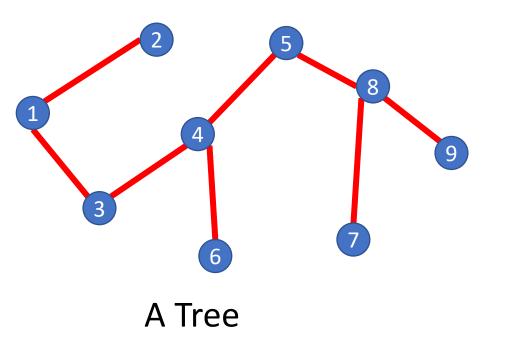


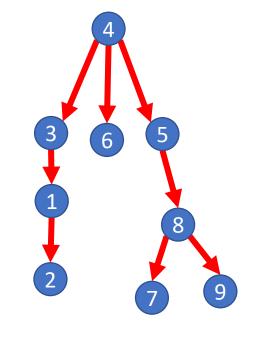
Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: |V|(|V| 1)
 - Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V| 1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

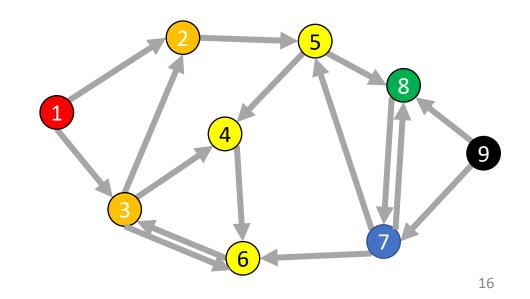


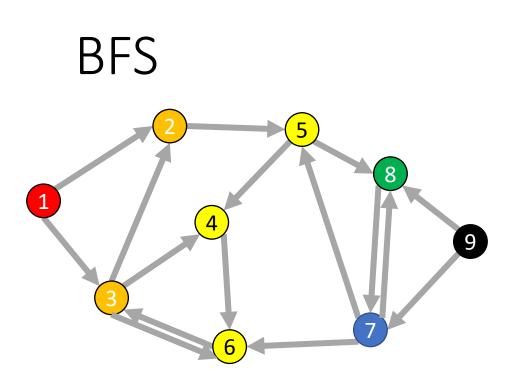


A Rooted Tree

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?



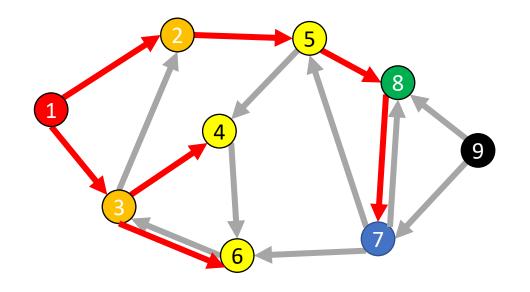


Running time: $\Theta(|V| + |E|)$

void bfs(graph, s){ found = new Queue(); found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.enqueue(v);

17

Shortest Path (unweighted)



Idea: when it's seen, remember its "layer" depth!

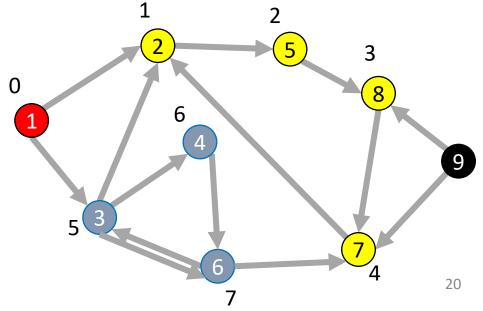
int shortestPath(graph, s, t){ found = new Queue(); layer = 0; found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v);

return depth of t;

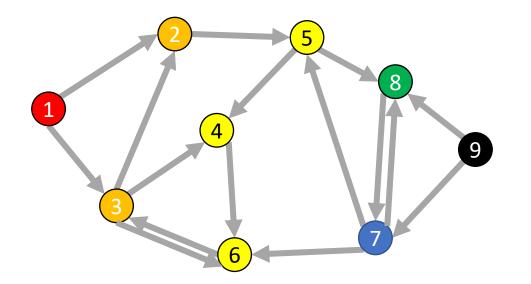
Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
 - Before moving on to the second neighbor of *s*, visit everything reachable from the first neighbor of *s*
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.



DFS (non-recursive)

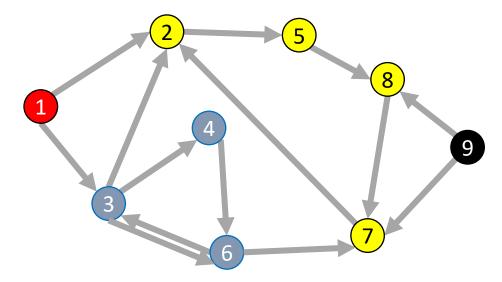


Running time: $\Theta(|V| + |E|)$

void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

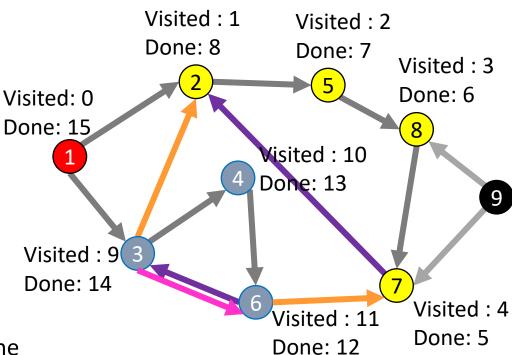
DFS Recursively (more common)

```
void dfs(graph, curr){
    mark curr as "visited";
    for (v : neighbors(current)){
        if (! v marked "visited"){
            dfs(graph, v);
            }
        mark curr as "done";
```



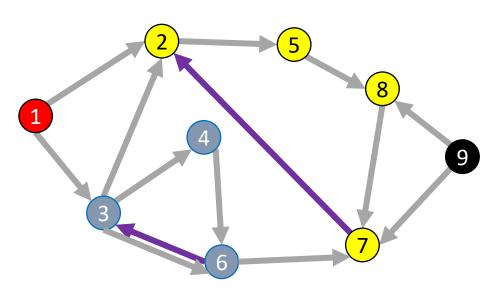
Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (*a*, *b*) was followed when pushing
 - (*a*, *b*) when *b* was unvisited when we were at *a*
 - Back Edge
 - (*a*, *b*) goes to an "ancestor"
 - *a* and *b* visited but not done when we saw (*a*, *b*)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (*a*, *b*) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (*a*, *b*) goes to a node that doesn't connect to *a*
 - *b* was seen and done before *a* was ever visited
 - $t_{done}(b) < t_{visited}(a)$

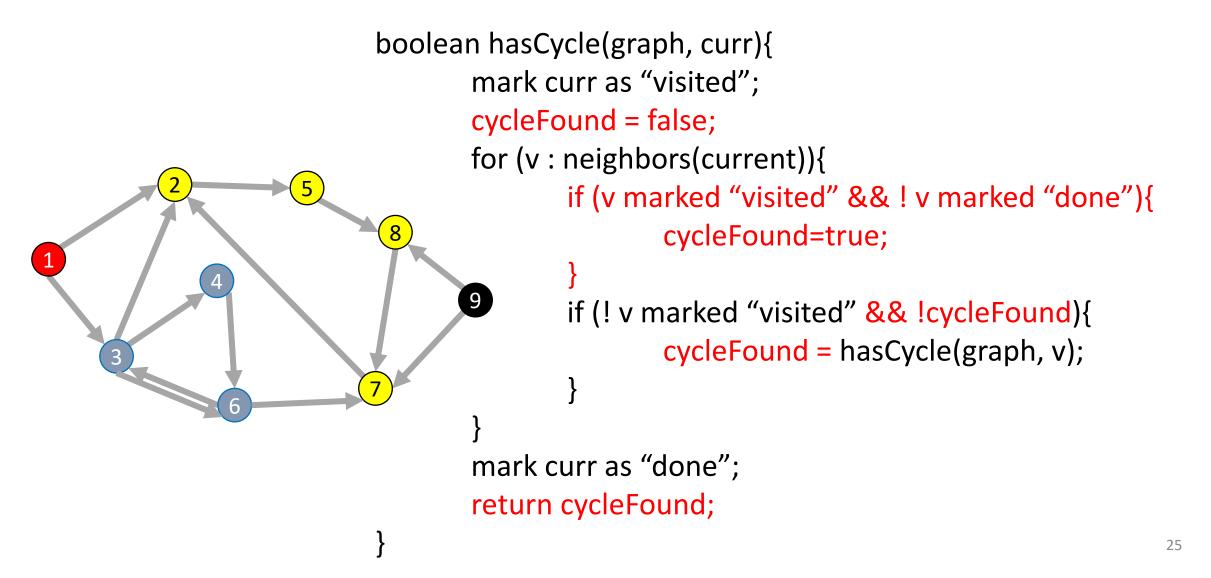


Back Edges

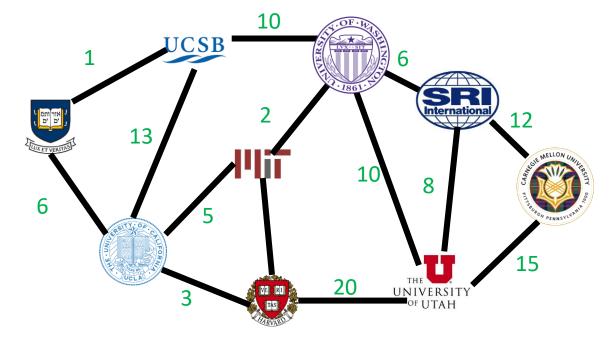
- Behavior of DFS:
 - "Visit everything reachable from the current node before going back"
- Back Edge:
 - The current node's neighbor is an "in progress" node
 - Since that other node is "in progress", the current node is reachable from it
 - The back edge is a path to that other node
 - Cycle!



Cycle Detection



Single-Source Shortest Path



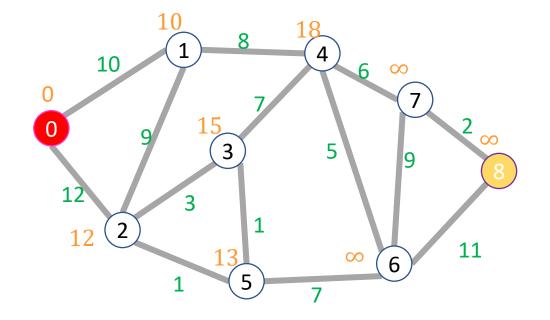
Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)

Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node **s**, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node



Dijkstra's Algorithm Start: 0 End: 8

ode	Done?	Node	Distance
	F	0	0
	F	1	∞
	F	2	∞
	F	3	∞
	F	4	∞
	F	5	∞
	F	6	∞
	F	7	∞
	F	8	∞

Ν

0

1

2

3

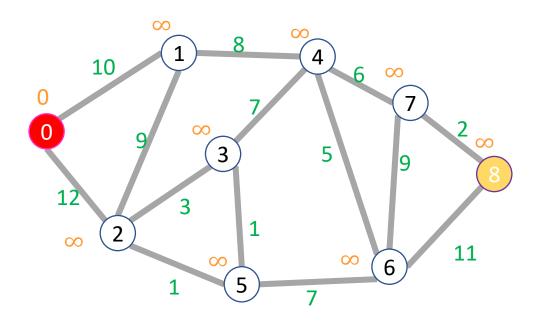
4

5

6

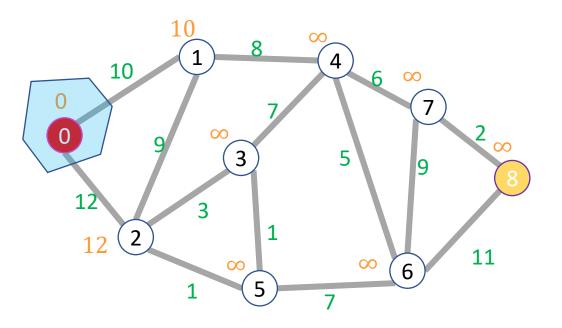
7

8



Dijkstra's Algorithm End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞



Dijkstra's Algorithm Start: 0 End: 8

lode	Done?	Node	Distance
	т	0	0
	Т	1	10
	F	2	12
	F	3	∞
	F	4	18
	F	5	∞
	F	6	∞
	F	7	∞
	F	8	∞

Ν

0

1

2

3

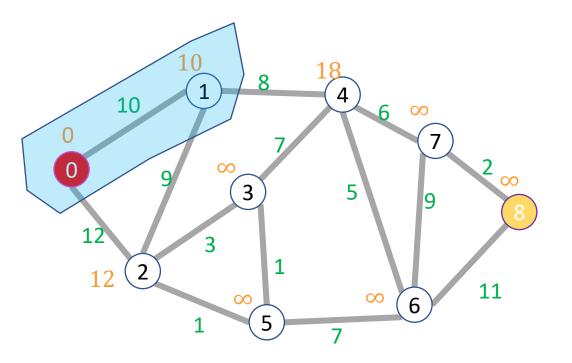
4

5

6

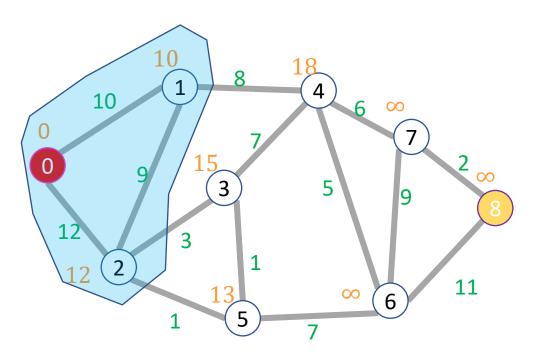
7

8



Dijkstra's Algorithm End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	15
4	F	4	18
5	F	5	13
6	F	6	∞
7	F	7	∞
8	F	8	∞



Dijkstra's Algorithm Start: 0 End: 8

ode	Done?	Node	Distance
	Т	0	0
	Т	1	10
	Т	2	12
	F	3	14
	F	4	18
	Т	5	13
	F	6	∞
	F	7	20
	F	8	∞

Ν

0

1

2

3

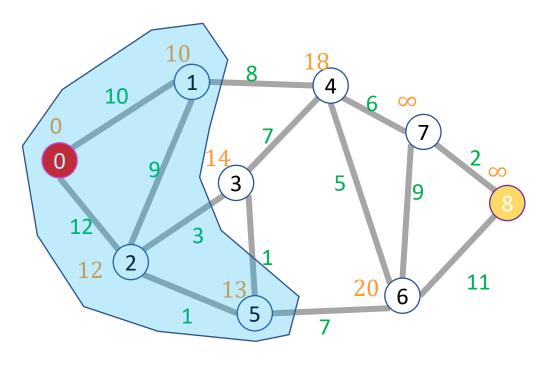
4

5

6

7

8



Dijkstra's Algorithm

int dijkstras(graph, start, end){

```
10
distances = [\infty, \infty, \infty, ...]; // one index per node
done = [False, False, False,...]; // one index per node
PQ = new minheap();
                                                                                3
PQ.insert(0, start); // priority=0, value=start
distances[start] = 0;
                                                                      2
while (!PQ.isEmpty){
         current = PQ.deleteMin();
                                                                           1
         done[current] = true;
         for (neighbor : current.neighbors){
                  if (!done[neighbor]){
                           new_dist = distances[current]+weight(current,neighbor);
                           if new dist < distances[neighbor]{
                                     distances[neighbor] = new_dist;
                                     PQ.decreaseKey(new dist,neighbor); }
return distances[end]
```

8

3

5

4

5

9

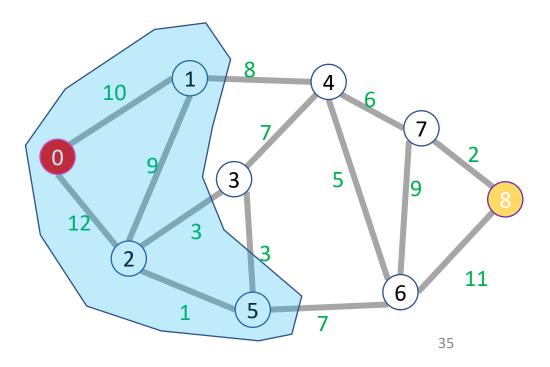
6

11

Dijkstra's Algorithm: Running Time

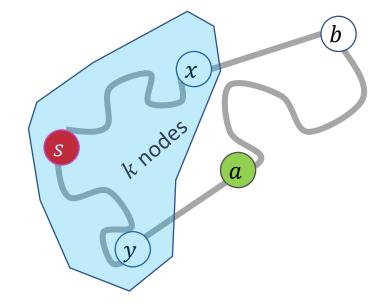
- How many total priority queue operations are necessary?
 - How many times is each node added to the priority queue?
 - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
 - $\Theta(|E|\log|V|)$

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

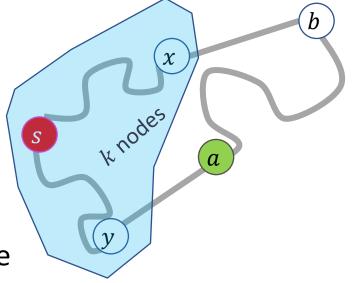


- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
 - It is indeed 0 away from itself
- Inductive Step:
 - If we have correctly found shortest paths for the first k nodes, then when we remove node k + 1 we have found its shortest path

• Suppose *a* is the next node removed from the queue. What do we know bout *a*?



- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
 - Consider any other incomplete node b that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
 - Consider any other incomplete node *b* that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - No path from *b* to *a* can have negative weight
 - Thus no path that includes *b* can be a shorter path to *a*
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

