CSE 332 Winter 2024 Lecture 18: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

Some Graph Terms

- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- Degree
 - Number of "neighbors" of a vertex
- Indegree
 - Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge 🦕
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)

Time/Space Tradeoffs

Space to represent: $\Theta(n + m)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(\deg(v))$ Check if Edge Exists: $\Theta(\deg(v))$ Get Neighbors (incoming): $\Theta(n + m)$ Get Neighbors (outgoing): $\Theta(\deg(v))$

$$|V| = n$$
$$|E| = m$$

	170	10	2	
1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		-

Adjacency Matrix				- 3	. V	, J , S	/ 	ţ			
4	> > 2	1		1	\mathcal{O}	1					
3 7 7	3 C 4 D	1	1	1	1	1	1	1			
<u>Time/Space Tradeoffs</u> Space to represent: $\Theta(?)$ HZ			1	1	1			1	1		
Add Edge: $\Theta(?)$ 1 Remove Edge: $\Theta(?)$ 7 $ V = n$	- G H				4	_ 1 _ 1	1	1	1	1	
Check if Edge Exists: $\Theta(?)$ Get Neighbors (incoming): $\Theta(?)$ $\Theta(?)$ $\Theta(?)$								T	L		

Time/Space TradeoffsSpace to represent: $\Theta(n^2)$ Add Edge: $\Theta(1)$ Remove Edge: $\Theta(1)$ Check if Edge Exists: $\Theta(1)$ Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

V	= n
E	= m

	А	В	С	D	Е	F	G	Н	I
А		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Simple Path:

A path in which each node appears at most once

Cycle:

A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Not (strongly) Connected

Connected

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges

Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: |V|(|V| 1)
 - Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V| 1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth! int shortestPath(graph, s, t){ found = new Queue(); layer = 0;found.enqueue(s); mark s as "visited"; While (!found.isEmpty()){ current = found.dequeue(); layer = depth of current; for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; depth of v = layer + 1; found.enqueue(v); return depth of t; 🤇 🦳 18

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit one neighbor of *s*, then all nodes reachable from that neighbor of *s*, then another neighbor of *s*,...
 - Before moving on to the second neighbor of *s*, visit everything reachable from the first neighbor of *s*
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.

void dfs(graph, s){ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty()){ current = found.pop(); for (v : neighbors(current)){ if (! v marked "visited"){ mark v as "visited"; found.push(v);

DFS Recursively (more common)

void dfs(graph, curr){
 mark curr as "visited";
 for (v : neighbors(current)){
 if (! v marked "visited"){
 dfs(graph, v);
 }
 mark curr as "done";

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (*a*, *b*) was followed when pushing
 - (*a*, *b*) when *b* was unvisited when we were at *a*
 - Back Edge
 - (*a*, *b*) goes to an "ancestor"
 - *a* and *b* visited but not done when we saw (*a*, *b*)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (*a*, *b*) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (*a*, *b*) goes to a node that doesn't connect to *a*
 - *b* was seen and done before *a* was ever visited
 - $t_{done}(b) < t_{visited}(a)$

Back Edges

- Behavior of DFS:
 - "Visit everything reachable from the current node before going back"
- Back Edge:
 - The current node's neighbor is an "in progress" node
 - Since that other node is "in progress", the current node is reachable from it
 - The back edge is a path to that other node
 - Cycle!

Cycle Detection

Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)

Dijkstra's Algorithm

- Input: graph with **no negative edge weights**, start node **s**, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node

Dijkstra's Algorithm Start: 0 End: 8

ode	Done?	Node	Distance
	F	0	0
	F	1	∞
	F	2	∞
	F	3	∞
	F	4	∞
	F	5	∞
	F	6	∞
	F	7	∞
	F	8	∞

Ν

0

1

2

3

4

5

6

7

8

Dijkstra's Algorithm End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm Start: 0 End: 8

lode	Done?	Node	Distance
	т	0	0
	Т	1	10
	F	2	12
	F	3	∞
	F	4	18
	F	5	∞
	F	6	∞
	F	7	∞
	F	8	∞

Ν

0

1

2

3

4

5

6

7

8

Dijkstra's Algorithm End: 8

Node	Done?	Node	Distance
0	Т	0	0
1	Т	1	10
2	Т	2	12
3	F	3	15
4	F	4	18
5	F	5	13
6	F	6	∞
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm Start: 0 End: 8

ode	Done?	Node	Distance
	Т	0	0
	Т	1	10
	Т	2	12
	F	3	14
	F	4	18
	Т	5	13
	F	6	∞
	F	7	20
	F	8	∞

Ν

0

1

2

3

4

5

6

7

8

Dijkstra's Algorithm

```
8
int dijkstras(graph, start, end){
                                                                              10
         distances = [\infty, \infty, \infty, ...]; // one index per node
         done = [False, False, False, ...]; // one index per node
         PQ = new minheap();
                                                                                          3
         PQ.insert(0, start); // priority=0, value=start
         distances[start] = 0;
                                                                                             3
                                                                                2
         while (!PQ.isEmpty){
                  current = PQ.deleteMin();
                                                                                            5
                                                                                     1
                  done[current] = true;
                  for (neighbor : current.neighbors){
                           if (!done[neighbor]){
                                     new_dist = distances[current]+weight(current,neighbor);
                                     if new dist < distances[neighbor]{
                                              distances[neighbor] = new_dist;
                                              PQ.decreaseKey(new dist,neighbor); }
         return distances[end]
```

4

5

9

6

11

Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
 - How many times is each node added to the priority queue?
 - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
 - $\Theta(|E|\log|V|)$

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
 - It is indeed 0 away from itself
- Inductive Step:
 - If we have correctly found shortest paths for the first k nodes, then when we remove node k + 1 we have found its shortest path

• Suppose *a* is the next node removed from the queue. What do we know bout *a*?

- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
 - Consider any other incomplete node b that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to *a* could be shorter
 - Consider any other incomplete node *b* that is 1 edge away from a complete node
 - *a* is the closest node that is one away from a complete node
 - No path from *b* to *a* can have negative weight
 - Thus no path that includes *b* can be a shorter path to *a*
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

