CSE 332 Winter 2024 Lecture 18: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

Some Graph Terms

- Adjacent/Neighbors
- Nodes are adjacent/neighbors if they share an edge
- Degree

- Number of "neighbors" of a vertex
- Indegree
- Number of incoming neighbors
- Outdegree
- Number of outgoing neighbors

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
- Add Edge
- Remove Edge
- Check if Edge Exists <-
- Get Neighbors (incoming)
- Get Neighbors (outgoing)

Adjacency List

Adjacency List (Weighted) (1)

Time/Space Tradeoffs
Space to represent: $\Theta(n+m)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(\operatorname{deg}(v))$
Check if Edge Exists: $\Theta(\operatorname{deg}(v))$

$$
\begin{array}{|l|}
|V|=n \\
|E|=m
\end{array}
$$

Get Neighbors (incoming): $\Theta(n+m)$ Get Neighbors (outgoing): $\Theta(\operatorname{deg}(v))$

Adjacency Matrix

Time/Space Tradeoffs
\$pace to represent: $\mathrm{Q}(?) h^{2}$
Add Edge: $\Theta(?)$ Remove Edge: $\Theta \overline{(?)} 7$
Check if Edge Exists: $\overline{\Theta(?)} 1$
Get Neighbors (incoming): Θ (?)

$$
\begin{array}{|l}
|V|=n \\
|E|=m
\end{array}
$$

Get Neighbors (outgoing): $\Theta(?)$

Adjacency Matrix (weighted)

Time/Space Tradeoffs
Space to represent: $\Theta\left(n^{2}\right)$
Add Edge: Θ (1)
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(1)$

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path

 A sequence of nodes ($v_{1}, v_{2} \ldots, v_{k}$) 10 s.t. $\forall 1 \leq i \leq k-1,\left(v_{i}, v_{i+1}\right) \in E$

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Definition: (Strongly) Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Connected

Not (strongly) Connected

Definition: Weakly Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2} ignoring direction of edges

Weakly Connected

Definition: Complete Graph

Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta\left(|V|^{2}\right)$:
- Undirected and simple: $\frac{|V|(|V|-1)}{2}$
- Directed and simple: $|V|(|V|-1)$
- Direct and non-simple (but no duplicates): $|V|^{2}$
- If the graph is connected, the minimum number of edges is $|V|-1$
- If $|E| \in \Theta\left(|V|^{2}\right)$ we say the graph is dense
- If $|E| \in \Theta(|V|)$ (we say the graph is sparse
- Because $|E|$ is not always near to $|V|^{2}$ we do not typically substitute $|V|^{2}$ for $|E|$ in running times, but leave it as a separate variable

Definition: Tree

A Graph $G=(V, E)$ is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

A Tree

A Rooted Tree

Breadth-First Search

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of S, \ldots
- Output:
- How long is the shortest path?
- Is the graph connected?

Shortest Path (unweighted)

Idea: when it's seen, remember its "layer" depth!

Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, \ldots
- Before moving on to the second neighbor of s, visit everything reachable from the first neighbor of s
- Output:
- Does the graph have a cycle?
- A topological sort of the graph.

DFS (non-recursive)

Running time: $\Theta(|V|+|E|)$
void dfs(graph, s)\{ found = new $\operatorname{Stack}() ;<$ found.pop(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.pop(); for (v: neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; found.push(v);
\}
\}
\}
\}

DFS Recursively (more common)

void dfs(graph, curr)\{
mark curr as "visited";
for (v: neighbors(current))\{ if (! v marked "visited")\{ dfs(graph, v);
\}
\}
mark curr as "done";
\}

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
- Tree Edge
- (a, b) was followed when pushing
- (a, b) when b was unvisited when we were at a

Back Edge

- (a, b) goes to an "ancestor"
- a and b visited but not done when we saw (a, b)
- $t_{\text {visited }}(b)<t_{\text {visited }}(a)<t_{\text {done }}(a)<t_{\text {done }}(b)$
- Forward Edge
- (a, b) goes to a "descendent"
- b was visited and done between when a was visited and done

- $t_{\text {visited }}(a)<t_{\text {visited }}(b)<t_{\text {done }}(b)<t_{\text {done }}(a)$
- Cross Edge
- (a, b) goes to a node that doesn't connect to a
- b was seen and done before a was ever visited
- $t_{\text {done }}(b)<t_{\text {visited }}(a)$

Back Edges

- Behavior of DFS:
- "Visit everything reachable from the current node before going back"
- Back Edge:
- The current node's neighbor is an "in progress" node
- Since that other node is "in progress", the current node is reachable from it
- The back edge is a path to that other node
- Cycle!

Cycle Detection

Idea: Look for a back edge!

Find the quickest way to get from UVA to each of these other places

Given a graph $G=(V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \rightarrow v$ (call this weight $\delta(s, v)$)

Dijkstra's Algorithm

- Input: graph with no negative edge weights, start node s, end node t
- Behavior: Start with node s, repeatedly go to the incomplete node "nearest" to s, stop when
- Output:
- Distance from start to end
- Distance from start to every node

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?	Node	Distance
0	F	0	0
1	F	1	∞
2	F	2	∞
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm
Start: 0
End: 8

Node	Done?	Node	Distance
0	T	0	0
1	F	1	10
2	F	2	12
3	F	3	∞
4	F	4	∞
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Dijkstra’s Algorithm

 Start: 0End: 8

Node	Done?	Node	Distance
0	T	0	0
1	T	1	10
2	F	2	12
3	F	3	∞
4	F	4	18
5	F	5	∞
6	F	6	∞
7	F	7	∞
8	F	8	∞

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Dijkstra's Algorithm

Start: 0
End: 8

Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?	Node	Distance
0	T	0	0
1	T	1	10
2	T	2	12
3	F	3	15
4	F	4	18
5	F	5	13
6	F	6	∞
7	F	7	∞
8	F	8	∞

Dijkstra's Algorithm Start: 0
End: 8
Idea: When a node is the closest undiscovered thing to the start, we have found its shortest path

Node	Done?	Node	Distance
0	T	0	0
1	T	1	10
2	T	2	12
3	F		3
4	F		14
5	T		18
6	F	6	13
7	F	7	∞
8	F	8	20

Dijkstra’s Algorithm

int dijkstras(graph, start, end)\{
distances $=[\infty, \infty, \infty, .$.$] ; // one index per node$
drne = [Fatse,False, Fatse,...]; // one index per node
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
distances[start] = 0;
while (!PQ.isEmpty)\{
current = PQ.deleteMin();
done[current] = true;

for (neighbor : current.neighbors)\{
if (!done[neighbor])\{
new_dist = distances[current]+weight(current,neighbor);
if new_dist < distances[neighbor]\{
distances[neighbor] = new_dist;
PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return distances[end]

Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
- How many times is each node added to the priority queue?
- How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
- $\Theta(|E| \log |V|)$

Dijkstra's Algorithm: Correctness

- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:

Dijkstra's Algorithm: Correctness

- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
- It is indeed 0 away from itself
- Inductive Step:

- If we have correctly found shortest paths for the first k nodes, then when we remove node $k+1$ we have found its shortest path

Dijkstra's Algorithm: Correctness

- Suppose a is the next node removed from the queue. What do we know bout a ?

Dijkstra’s Algorithm: Correctness

- Suppose a is the next node removed from the queue.
- No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
- Consider any other incomplete node b that is 1 edge away from a complete node
- a is the closest node that is one away from a complete node

- Thus no path that includes b can be a shorter path to a
- Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!

Dijkstra’s Algorithm: Correctness

- Suppose a is the next node removed from the queue.
- No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
- Consider any other incomplete node b that is 1 edge away from a complete node
- a is the closest node that is one away from a complete node

- No path from b to a can have negative weight
- Thus no path that includes b can be a shorter path to a
- Therefore the shortest path to a must use only complete nodes, and therefore we have found it already!

