
CSE 332 Winter 2024
Lecture 1: Intro to ADTs, Stacks,

Queues
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Nathan Brunelle

• Born: Virginia Beach, VA

• Ugrad: Math and CS at University of Virginia

• Grad: CS at University of Virginia

• Taught at UVA for 6 years
• Intro to programming (e.g. 121)

• Discrete Math (e.g. 311)

• Algorithms (e.g. 412)

• Theory of Computation (e.g. 431)

Warm Up!

Put up one hand (you can switch if it gets tired)!

While (you and at least one other person have a hand up){

make a partnership with someone whose hand is still raised

share your name with your partner

determine which of you has run the longest distance (as a single run)

release partnership

if you ran the shorter distance, then put your hand down and return
to your seat

}

About this course

Topics covered:

• Data Structures
• Specific “classic” data structures

• Introduction to Algorithms and Analysis

• Parallelism and Concurrency
• Parallelism: Use multiple processors to finish sooner

• Concurrency: Correct access to shared resources

Course Staff

• Instructor:
• Nathan Brunelle

• TAs:

Course Info

• Text (optional):
• Data Structures & Algorithm Analysis in Java, (Mark Allen Weiss), 3rd edition,

2012
(2nd edition also o.k.)

• Course Page:
• http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Communication

• Course email list:
• cse332_wi24@uw

• You are already subscribed

• You must get and read announcements sent there

• Ed STEM Discussion board
• Your first stop for questions about course content & assignments

Course Meetings

• Lecture
• Materials posted (slides before class, inked slides after)
• Recorded using Panopto
• Ask questions, focus on key ideas (rarely coding details)

• Section
• Practice problems!
• Answer Java/project/homework questions, etc.
• Occasionally may introduce new material
• An important part of the course (not optional)

• Office hours
• Use them: please visit us!

Grading

• 12ish Weekly individual homework exercises (25%)
• Lowest 2ish dropped (best 10 count)

• 3 programming projects (with phases) (35%)
• Use Java and IntelliJ, Gitlab
• Done individually

• Midterm and final exam (40%)
• In-person
• Midterm in this room
• Final location TBD

• Dates:
• Midterm: Monday Feb 5, during lecture
• Final Exam: Thursday March 14, 12:30pm-2:20pm

Collaboration

• Try it yourself first

• Collaborate with classmates (no external interactive help on
assignments permitted)
• Collaboration is “whiteboard only”

• Looking for a collaborator?
• Post on the Ed Discussion board

• Go to the CSE study room (Allen Center 006, there’s a table specifically for 332!)

• Cite your sources!

Terminology

• Abstract Data Type (ADT)
• Mathematical description of a “thing” with set of operations on that “thing”

• Algorithm
• A high level, language-independent description of a step-by-step process

• Data structure
• A specific organization of data and family of algorithms for implementing an

ADT

• Implementation of a data structure
• A specific implementation in a specific language

ADT: Queue

• What is it?

• What Operations do we need?
• Enqueue:

• Dequeue:

• isEmpty:

ADT: Queue

• What is it?
• A “First In First Out” (FIFO) collection of items

• What Operations do we need?
• Enqueue

• Add a new item to the queue

• Dequeue
• Remove the “oldest” item from the queue

• IsEmpty
• Indicate whether or not there are items still on the queue

Linked List – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” variable referencing the oldest item
• A “back” variable referencing the most recent item
• Each item points to the item enqueued after it

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

8 3 4 75Front

Back

Linked List – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” variable referencing the oldest item
• A “back” variable referencing the most recent item
• Each item points to the item enqueued after it

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

8 3 4 75Front

Back

enqueue(x){
 last = new Node(x)
 back.next = last
 back = last
}

dequeue(){
 first = front.item
 front = front.next
 return first
}

is_empty(){
 return front.equals(Null)
}

Circular Array – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” variable referencing the oldest item
• A “back” variable referencing the most recent item
• Each item points to the item enqueued after it

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

8 3 4 75Front

Back

4 5 6 7321 80 9

Circular Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

74385
Front=0

Back=4

4 5 6 7321 80 9

Circular Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

74385
Front=0

Back=4

enqueue(x){
 queue[back] = x
 back = (back + 1) % queue.length
}
dequeue(){
 first = queue[front]
 front = (front + 1) % queue.length
}
is_empty(){
 return front == back
}

Linked List vs. Circular Array

ADT: Stack

• What is it?

• What Operations do we need?

ADT: Stack

• What is it?
• A “Last In First Out” (LIFO) collection of items (sometimes called FILO)

• What Operations do we need?
• Push

• Add a new item onto the stack

• Peek
• Return the value of the most recently pushed item

• Pop
• Return the value of the most recently pushed item and remove it from the stack

• Is_empty
• Indicate whether or not there are items still on the stack

	Slide 1: CSE 332 Winter 2024 Lecture 1: Intro to ADTs, Stacks, Queues
	Slide 2: Nathan Brunelle
	Slide 3: Warm Up!
	Slide 4: About this course
	Slide 5: Course Staff
	Slide 6: Course Info
	Slide 7: Communication
	Slide 8: Course Meetings
	Slide 9: Grading
	Slide 10: Collaboration
	Slide 11: Terminology
	Slide 12: ADT: Queue
	Slide 13: ADT: Queue
	Slide 14: Linked List – Queue Data Structure
	Slide 15: Linked List – Queue Data Structure
	Slide 16: Circular Array – Queue Data Structure
	Slide 17: Circular Array – Queue Data Structure
	Slide 18: Circular Array – Queue Data Structure
	Slide 19: Linked List vs. Circular Array
	Slide 20: ADT: Stack
	Slide 21: ADT: Stack

