CSE 332 Winter 2024
Lecture 21: Analysis

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Parallel Pack

Output:

Input:

10

16

4

18

14

10

16

18

14

1. Do a map to identify the true elements

1

1

0

1

0

0

1

0

 fx) =x>9

2. Do prefix sum on the result of the map to identify the count of true

elements seen to the left of each position

1

2

2

3

3

3

A

A

3. Doamapusingt

ne previous results fill in the output

10

16

18

14

3. Do a map using the result of the prefix sum
to fill in the output
Input: 10{16] 4 1181 8| 2 |14]| 9

MapResult: | 1 | 1 1011101011110

PrefixResult: | 1 | 2 1 2|1 31 3131414

* Because the last value in the prefix result is 4, the length of the output is 4
e Each time thereis a 1 in the map result, we want to include that element in the output
* If element i should be included, its position matches prefixResult[i]-1

Int[] output = new int[prefixResult[input.length-1]];
FORALL(inti=0; i <input.length; i++){
if (mapResult[i] == 1)
output[prefixResult[i]-1] = input]i];

Parallel Algorithm Analysis

* How to define efficiency
* Want asymptotic bounds

* Want to analyze the algorithm without regard to a specific number of
processors

Work and Span

* Let Tp(n) be the running time if there are P processors available

* Two key measures of run time:

* Work: How long it would take 1 processor, so T;(n)
* Just suppose all forks are done sequentially

e Cumulative work all processors must complete
* For array sum: ©(n)

* Span: How long it would take an infinite number of processors, so T, (n)
* Theoretical ideal for parallelization

* Longest “dependence chain” in the algorithm

* Also called “critical path length” or “computation depth”
* For array sum: O(logn)

Directed Acyclic Graph (DAG)

* A directed graph that has no cycles

e Often used to depict dependencies
* E.g. software dependencies, Java inheritance, dependencies among threads!

@)
(3)

ForkJoin DAG

 Fork and Join each create a new node

* Fork branches into two threads
* Those two threads “depended on” their source thread to be created

* Join combines to threads
* The thread doing the combining “depends on” the other threads to finish

O Q — Divide

2 2 a -
O Q Q Q Q Q Q Q Base Cases
. O Q O &

O O O — Combine

More Vocab

Speed Up:

* How much faster (than one processor) do we get for more processors
« T1(n)/Tp(n)

Perfect linear Speedup
Ty

Tp
* Hard to get in practice
* “Holy Grail” or parallelizing

Parallelism
* Maximum possible speedup

e T, /T
* At some point more processors won’t be more helpful, when that point is depends on the span

Writing parallel algorithms is about increasing span without substantially increasing work

Asymptotically Optimal Tp

* We know how to compute T; and T, but what about Tp?
e Tr cannot be better than %

e Trcannot be better than T,

* An asymptotically optimal execution would be

e To(n) € 0 (Tlfj") +T, (n))

e T;(n)/P dominates for small P, T, (n) dominates for large P

* ForkJoin Framework gives an expected time guarantee of
asymptotically optimall

Division of Responsibility

* Our job as ForkJoin Users:
* Pick a good algorithm, write a program
* When run, program creates a DAG of things to do
* Make all the nodes a small-ish and approximately equal amount of work

* ForkJoin Framework Developer’s job:

* Assign work to available processors to avoid idling
* Abstract away scheduling issues for the user
* Keep constant factors low

* Give the expected-time optimal guarantee

And now for some bad news...

*In practice it’'s common for your program to have:
e Parts that parallelize well
* Maps/reduces over arrays and other data structures

* And parts that don’t parallelize at all

* Reading a linked list, getting input, or computations where each step needs the results of
previous step

* These unparallelized parts can turn out to be a big bottleneck

Amdahl’s Law (mostly bad news)

* SupposeT; =1
* Work for the entire programis 1

* Let S be the proportion of the program that cannot be parallelized
T, =S+(1-5)=1

* Suppose we get perfect linear speedup on the parallel portion

¢ Tp —_ S + 1775
* For the entire program, the speed is:
o I _1
Tp S+1%g
* And so the parallelism (infinite processors) is:
Ty 1

T oo S

Ahmdal’s Law Example

» Suppose 2/3 of your program is parallelizable, but 1/3 is not.

* Soif T; is 100 seconds:
¢ TP :33+%
* Ty =33+ =33+22 =55

Conclusion

* Even with many many processors the sequential part of your program
becomes a bottleneck

 Parallelizable code requires skill and insight from the developer to
recognize where parallelism is possible, and how to do it well.

Reasons to use threads (beyond algorithms)

* Code Responsiveness:

* While doing an expensive computation, you don’t what your interface to
freeze

* Processor Utilization:

* |f one thread is waiting on a deep-hierarchy memory access you can still use
that processor time

* Failure Isolation:
* |f one portion of your code fails, it will only crash that one portion.

Memory Sharing With ForkJoin

* |dea of ForkJoin:
* Reduce span by having many parallel tasks
* Each task is responsible for its own portion of the input/output
* If one task needs another’s result, use join() to ensure it uses the final answer

* This does not help when:
* Memory accessed by threads is overlapping or unpredictable

* Threads are doing independent tasks using same resources (rather than
implementing the same algorithm)

Example: Shared Queue

enqueue(x){
if (back == null){
back = new Node(x);
front = back;

}

else {
back.next = new Node(x);
back = back.next;

}

Imagine two threads are both using the
same linked list based queue.

What could go wrong?

Concurrent Programming

* Concurrency:

* Correctly and efficiently managing access to shared resources across multiple
possibly-simultaneous tasks

* Requires synchronization to avoid incorrect simultaneous access

* Use some way of “blocking” other tasks from using a resource when another
modifies it or makes decisions based on its state

* That blocking task will free up the resource when it’s done

* Warning:
* Because we have no control over when threads are scheduled by the OS, even
correct implementations are highly non-deterministic

* Errors are hard to reproduce, which complicates debugging

Bank Account Example

* The following code implements a bank account object correctly for a synchronized situation
* Assume the initial balance is 150
class BankAccount { L
private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
int b = getBalance();
if (@amount > b)
throw new WithdrawToolargeException();
setBalance(b —amount); }
// other operations like deposit, etc.

withdraw(100);
withdraw(75)

Bank Account Example - Parallel

e Assume the initial balance is 150

class BankAccount { Thread 1-
private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) { Thread 2:
int b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount); }
// other operations like deposit, etc.

withdraw(100);

withdraw(75);

Interleaving

* Due to time slicing, a thread can be interrupted at any time
* Between any two lines of code
e Within a single line of code

* The sequence that operations occur across two threads is called an
interleaving

* Without doing anything else, we have no control over how different
threads might be interleaved

A “Good” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:

withdraw(100); withdraw(75);

int b = getBalance();
if (amount > b)

throw new Exception();
setBalance(b — amount);
int b = getBalance();
if (@amount > b)

throw new Exception();
setBalance(b — amount);

A “Bad” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:

withdraw(100); withdraw(75);

int b = getBalance();
int b = getBalance();
if (amount > b)

throw new Exception();
setBalance(b — amount);
if (@amount > b)

throw new Exception();
setBalance(b — amount);

Another result?

e Assume the initial balance is 150

Thread 1: Thread 2:
withdraw(100); withdraw(75);
int b = getBalance(); int b = getBalance();
if (amount > b) if (amount > b)
throw new Exception(); throw new Exception();

setBalance(b — amount); setBalance(b — amount);

A Bad Fix

e Assume the initial balance is 150

class BankAccount {
private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
if (amount > getBalance())
throw new WithdrawToolargeException();
setBalance(getBalance() — amount); }
// other operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:

withdraw(100); withdraw(75);

if (amount > getBalance())
throw new Exception();
if (amount > getBalance())
throw new Exception();
getBalance()
setBalance(getBalance() — amount);
setBalance(— amount);

What we want — Mutual Exclusion

* While one thread is withdrawing from the account, we want to
exclude all other threads from also withdrawing

e Called mutual exclusion:

* One thread using a resource (here: a bank account) means another thread
must wait

* We call the area of code that we want to have mutual exclusion (only one
thread can be there at a time) a critical section.

* The programmer must implement critical sections!
* |t requires programming language primitives to do correctly

A Bad attempt at Mutual Exclusion

class BankAccount {

private int balance = 0;

private Boolean busy = false;

int getBalance() { return balance; }

void setBalance(int x) { balance = x; }

void withdraw(int amount) {
while (busy) { /* wait until not busy */}
busy = true;
int b = getBalance();
if (amount > b)

throw new WithdrawToolargeException();

setBalance(b — amount);
busy = false;}

// other operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

Thread 1:

withdraw(100);

Thread 2:

withdraw(75);

while (busy) { /* wait until not busy */}
busy = true;

int b = getBalance();

if (@amount > b)

throw new Exception();
setBalance(b — amount);
busy = false;

while (busy) { /* wait until not busy */ }
busy = true;

int b = getBalance();
if (amount > b)
throw new Exception();
setBalance(b — amount);
busy = false;

Solution

 We need a construct from Java to do this
* One Solution — A Mutual Exclusion Lock (called a Mutex or Lock)

* We define a Lock to be a ADT with operations:

* New:
* make a new lock, initially “not held”
* Acquire:
* |f lock is not held, mark it as “held”
* These two steps always done together in a way that cannot be interrupted!
* If lock is held, pause until it is marked as “not held”
* Release:
* Mark the lock as “not held”

Almost Correct Bank Account Example

class BankAccount {
private int balance = 0;
private Lock Ick = new Lock();
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
lk.acquire();
int b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount);
lk.release();}
// other operations like deposit, etc.

Questions:
1. Whatis the critical section?
2. What s the Error?

Try...Finally

* Try Block:
* Body of code that will be run

* Finally Block:

* Always runs once the program exits try block (whether due to a return,
exception, anything!)

Correct (but not Java) Bank Account Example

class BankAccount {
private int balance = 0;
private Lock Ick = new Lock();
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
try{
lk.acquire();
int b = getBalance();
if (amount > b)

Questions:

1. Should deposit have its own
lock object, or the same one?

2. What about getBalance?

3. What about setBalance?

throw new WithdrawToolargeException();

setBalance(b — amount); }
finally { Ik.release(); } }
// other operations like deposit, etc.

	Slide 1: CSE 332 Winter 2024 Lecture 21: Analysis
	Slide 2: Parallel Pack
	Slide 3: 3. Do a map using the result of the prefix sum to fill in the output
	Slide 4: Parallel Algorithm Analysis
	Slide 5: Work and Span
	Slide 6: Directed Acyclic Graph (DAG)
	Slide 7: ForkJoin DAG
	Slide 8: More Vocab
	Slide 9: Asymptotically Optimal cap T sub cap P
	Slide 10: Division of Responsibility
	Slide 11: And now for some bad news…
	Slide 12: Amdahl’s Law (mostly bad news)
	Slide 13: Ahmdal’s Law Example
	Slide 14: Conclusion
	Slide 15: Reasons to use threads (beyond algorithms)
	Slide 16: Memory Sharing With ForkJoin
	Slide 17: Example: Shared Queue
	Slide 18: Concurrent Programming
	Slide 19: Bank Account Example
	Slide 20: Bank Account Example - Parallel
	Slide 21: Interleaving
	Slide 22: A “Good” Interleaving
	Slide 23: A “Bad” Interleaving
	Slide 24: Another result?
	Slide 25: A Bad Fix
	Slide 26: A still “Bad” Interleaving
	Slide 27: What we want – Mutual Exclusion
	Slide 28: A Bad attempt at Mutual Exclusion
	Slide 29: A still “Bad” Interleaving
	Slide 30: Solution
	Slide 31: Almost Correct Bank Account Example
	Slide 32: Try…Finally
	Slide 33: Correct (but not Java) Bank Account Example

