
CSE 332 Winter 2024
Lecture 23: Race Conditions,

Deadlock
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Race Condition

• Occurs when the computation result depends on scheduling (how
threads are interleaved)
• We, as programmers can’t influence scheduling of threads
• We need to write programs that work independent of scheduling

• Data Race:
• When there is the potential for two threads to be writing a variable in parallel
• When there is the potential for one thread to be reading a variable while

another writes to it

• Bad Interleaving:
• A race condition other than a data race
• Usually it looks like exposing a “bad” intermediate state

Example: Shared Stack (no problems so far)
class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() {

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 return array[index--];

 } }

Critical sections of this code?

Race Condition, but no Data Race
class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Critical sections of this code?

Race Condition, including a Data Race
class Stack {
 private E[] array = (E[])new Object[SIZE];
 private int index = -1;
 synchronized boolean isEmpty() { … }
 synchronized void push(E val) { … }
 synchronized E pop() { … }
 E peek(){
 System.out.println(index);
 E ans = pop();

push(ans);
return ans;

 }
}

Peek and isEmpty

peek();

Thread 1:

push(x);
boolean b = isEmpty();

Thread 2:

E ans = pop();

push(ans);
return ans;

push(x);

boolean b = isEmpty();

Expected Behavior:
Thread 2 should not see an empty stack if
there is a push but no pop.

Peek and Push

peek();

Thread 1:
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Thread 2:

E ans = pop();
push(ans);
return ans;

push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Peek and Pop

peek();

Thread 1:
push(x);
push(y);
System.out.println(pop());
System.out.println(pop());

Thread 2:

E ans = pop();

push(ans);
return ans;

push(x);

push(y);

System.out.println(pop());
System.out.println(pop());

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

How to fix this?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Make a bigger critical section

How to fix this?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 synchronized E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Make a bigger critical section

Did this fix it?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 return array[index];

 }

}

No! Now it has a data race!

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever
write to it

3. Shared and Mutable: There is just one copy, it may change
• Requires Synchronization!

Thread Local Memory

• Whenever possible, avoid sharing resources

• Dodges all race conditions, since no other threads can touch it!
• No synchronization necessary! (Remember Ahmdal’s law)

• Use whenever threads do not need to communicate using the
resource
• E.g., each thread should have its on Random object

• In most cases, most objects should be in this category

Immutable Objects

• Whenever possible, avoid changing objects
• Make new objects instead

• Parallel reads are not data races
• If an object is never written to, no synchronization necessary!

• Many programmers over-use mutation, minimize it

Shared and Mutable Objects

• For everything else, use locks

• Avoid all data races
• Every read and write should be projected with a lock, even if it “seems safe”

• Almost every Java/C program with a data race is wrong

• Even without data races, it still may be incorrect
• Watch for bad interleavings as well!

Consistent Locking

• For each location needing synchronization, have a lock that is always
held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
• Clearly document what each lock guards!

• In Java, the lock should usually be the object itself (i.e. “this”)

• Have a mapping between memory locations and lock objects and
stick to it!

Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
• One lock for an entire data structure

• One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
• One lock per data structure location (e.g. array index)

• One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them…

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable

• Fine-grained: One lock for each bucket

• Which supports more parallelism in insert and find?

• Which makes rehashing easier?

• What happens if you want to have a size field?

Tradeoffs

• Coarse-Grained Locking:
• Simpler to implement and avoid race conditions

• Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

• Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
• More simultaneous access (performance when coarse grained would lead to

unnecessary blocking)

• Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guideline:
• Start with coarse-grained, make finer only as necessary to improve performance

Similar But Separate Issue: Critical Section
Granularity
• Coarse-grained

• For every method that needs a lock, put the entire method body in a lock

• Fine-grained
• Keep the lock only for the sections of code where it’s necessary

• Guideline:
• Try to structure code so that expensive operations (like I/O) can be done

outside of your critical section

• E.g., if you’re trying to print all the values in a tree, maybe copy items into an
array inside your critical section, then print the array’s contents outside.

Atomicity

• Atomic: indivisible

• Atomic operation: one that should be thought of as a single step

• Some sequences of operations should behave as if they are one unit
• Between two operations you may need to avoid exposing an intermediate

state

• Usually ADT operations should be atomic
• You don’t want another thread trying to do an insert while another thread is rotating the

AVL tree

• Think first in terms of what operations need to be atomic
• Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

• Whenever possible, use built-in libraries!

• Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
• Especially true for concurrent data structures

• Use thread-safe data structures when available
• E.g. Java as ConcurrentHashMap

Deadlock

• Occurs when two or more threads are mutually blocking each other

• T1 is blocked by T2, which is blocked by T3, …, Tn is blocked by T1
• A cycle of blocking

Bank Account

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt, BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a
task and different threads may obtain them in a different order

• Option 1:
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2:
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked

separately

• Option 3:
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit,

make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(BANK){

 this.withdraw(amt);

 a.deposit(amt);

 }

 }

}

Option 2: Finer Critical Section

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(this){

 this.withdraw(amt);

 }

 synchronized(a){

 a.deposit(amt);

 }

 }

}

Option 3: First Get All Locks In A Fixed Order
class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 if (this.acctNum < a.acctNum){

 synchronized(this){

 synchronized(a){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 else {

 synchronized(a){

 synchronized(this){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 }

}

	Slide 1: CSE 332 Winter 2024 Lecture 23: Race Conditions, Deadlock
	Slide 2: Race Condition
	Slide 3: Example: Shared Stack (no problems so far)
	Slide 4: Race Condition, but no Data Race
	Slide 5: Race Condition, including a Data Race
	Slide 6: Peek and isEmpty
	Slide 7: Peek and Push
	Slide 8: Peek and Pop
	Slide 9: How to fix this?
	Slide 10: How to fix this?
	Slide 11: Did this fix it?
	Slide 12: Parallel Code Conventional Wisdom
	Slide 13: Memory Categories
	Slide 14: Thread Local Memory
	Slide 15: Immutable Objects
	Slide 16: Shared and Mutable Objects
	Slide 17: Consistent Locking
	Slide 18: Lock Granularity
	Slide 19: Example: Separate Chaining Hashtable
	Slide 20: Tradeoffs
	Slide 21: Similar But Separate Issue: Critical Section Granularity
	Slide 22: Atomicity
	Slide 23: Use Pre-Tested Code
	Slide 24: Deadlock
	Slide 25: Bank Account
	Slide 26: The Deadlock
	Slide 27: The Deadlock
	Slide 28: Resolving Deadlocks
	Slide 29: Option 1: Coarser Locking
	Slide 30: Option 2: Finer Critical Section
	Slide 31: Option 3: First Get All Locks In A Fixed Order

