CSE 332 Autumn 2023
Lecture 26: Topological Sort and
Minimum Spanning Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Bank Account

Public static final Object BANK = new Object();
class BankAccount {

(__?synchronized void withdraw(int amt) {...}
/’7ynchronized void deposit(int amt) {...}
synchronized void transferTo(int amt, BankAccount a) {
timer.start();
lk.lock();
other thread

)

The Deadlock

Thread 1:

t/x.t{a nsferTo(1,y);
I/

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

| y.transferTo(1,x);

ﬁ (-

acquire lock for account x b/c transferTo is synchronized
acquire lock for accoun /c deposit is synchronized
release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account y t/c transferTo is synchronized
X

acquire lock for accouq deposit is synchronized
release lock for account xafter deposit

release lock for account y at end of transferTo

The Deadlock

Thread 1:

x.transferTo(1,y);

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

y.transferTo(1,x);

acquire lock for account x,6/c transferTo is synchronized
acquire lock for accou[mt/y_tﬁ/c deposit is synchronized
release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for accounlb/c transferTo is synchronized
acquire lock for accounZLb/c deposit is synchronized
release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

* Deadlocks occur when there aremultiple locks necessary to complete a

task and different Way obtain themiin a &f_fﬂ\t order/

* Option 1:

* Have a coarser lock granularity //\
* E.g. one lock for ALL bank accounts

* Have a finer critical section so that only one lock is needed at a time
* E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked
separately

Option 3:

* Force the threads to always acquire the locks in the same order

* E.g. make transferTo acquire both locks before doing either the withdraw or deposit,
make sure both threads agree on the order to aquire

Option 1: Coarser Locking
e

static final Object BANK = new Object();

class BankAccount {

synchronized void withdraw(int amt) {...}

synchronized void deposit(int amt) {...}

void transferTo(int amt, BankAccount a) {
synchronized(BANK){

/7 this.withdraw(amt);

a.deposit(amt);

Option 2: Finer Critical Section

class BankAccount {

@oid withdraw(int amt) {...}
synchronized void deposit(int amt) {...}

% void transferTo(int amt, BankAccount a) {
wchronized(this){
this.withdraw(amt);

—

b

synchronizeﬂg}{
a.deposit(amt);

Option 3: First Get All Locks In A Fixed Order

class BankAccount {
et

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccoun\t/a) {

ﬁ sync romzed@{

synchronized(a}
this.withdraw(amt);

a.deposit(amt);

P
else {
synchronized(a){
synchronized(this){
this.withdraw(amt);
a.deposit(amt);
b

Depth-First Search =47/

\/
/\ §

e
* Behavior: Start with node s, visit one neighborof s, tb%all nodes
reachable from that neighbor of s, then another neighbor of s,...

. Output
Does the graph have a cycle?j

DFS (non-recursive)

O)
©
o @ o

3 & -

Running time: O(|V| + |E|)

void dfs(graph, s){

found = new Stack();
found.pop(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.pop();
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
found.push(v);

10

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ if (v marked “visited” && ! v marked “done”){
cycleFound=true;

4 } L ——
e if (! v marked “visited” && !cycleFound){
e cycleFound = hasCycle(graph, v);
O @ }
}

mark curr as “done”;
return cycleFound;

} 12

Jopologicalsort -) 4 - %

/- A Topological Sort of a directed acyclic graph G = (V,E)isa
permutation ofLsuch that if (u, v) € E then u is before v in the
¥ .
@G
208

(6)@)-0 e@@e ﬁ” 0 °

permutation —
. o
6 S—

13

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by “done” time

15

DFS: Topological sort

List topSort(graph){

List<Nodes> done = new List<>(); </—

r (Node v : graph.vertices){ ldea: List in reverse
= if ('v.visited){ ‘—% der by “d " i
finishTime(graph, v, finished); oraer by aone time
} i

done.reverse(); J _j 7

} return done; fwshed:// 877 5 ak ,L ?Z_ A] C7

void finishTime(graph, curr, finished){ O @ QJ_
—=* currvisited = true; @

for (Node v : curr.neighbors){ 0
—= if (Iv.visited){ k @ é)
} @Tlme(graph v, f|n|shed)J

Lone.add(curr) é—\ @j Q d

Definition: Tree

I -

_> A C@ected graph with no/czlcles

Note: A tree does not need

a root, but ’mJe,of_tu_d\M)!

=
0\6
T\

Definition: Tree

A connected graph with no cycles ._Z

Pick some arbitrary
root node and
rearrange tree

18

Deﬂnition:@@ﬂiﬂgTr{J

A Tree T = (Vy, E;) which connects (“spans”)

all the nodes in a grapI‘KJ (V,E) (V/\' /

How many edges does T have?
/_‘ o 9
KQ 0 0 . H) :
> e @ n

Pick some arbitrary 6
root node and 1 G

rearrange tree G 3 Q

Any set of V-1 gdges in the graph that | Any set of V-1 edges that connects all
doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to

to be a spanning tree! < be a spanning tree! 19

Definition:{Minimum/Spanning Tree

A Tree T = (Vr, E7) which connects (“spans”
all the'nodes in a graph ¢ = (V, E), that has
minimal cost

W00,
@3 7 @@ Cost(T) = Z w(e)
S @Q 5 9 0 eeEr
“eme”

20

LKru/ska\\’; Algorithm

Start with an empty tre(eJA
Add to A the lowest-weight edge that does not
create a cycle

21

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

0 O——0_,
: o
o9@59Q

3
11
61\66@

22

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

23

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

10 DS .
7 H)
A) 9 92
12@@3 0
)g .
166

24

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

25

Kruskal’s Algorithm V—]

Start with an empty tree A
Add to A thEZIrowest-weight edge(that does not

create a cycle

26

Definitiony Cut

ﬁwraph G = (V,E) is a partition of the

N

nodes into two sets, $

Edge (v,,v,) € E crosses a
cutifvyeSandv, eV —-3S§
(or opposite), e.g. (4,C)

ndl/ — 5§

A
\\
6 =
A set of edges R Respects a cu
if no edgM
e.g. R = {(AB), & 6),(

Cut Theorem,

If a set of edges A is a subset of a minimum spanning tree T, let S,V —
S) be any cut which A respects. Let @ be the least-weight edge which—
/ L] -] [} [}
crosses (S,V — S)lA U is also a subset of a minimum spanning

tree. ~—— A—

28

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

10 O——0_,
7 @
0 9 Q 5)
S O
12 3
G i e 11
' G 6 29

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S,V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

30

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —

S) be any cut which A respects. Le%e the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

31

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

32

Proof of Kruskal’s Algorithm

Start with an empty tree A

Repeat V' — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Proof: Suppose we have some arbitrary set of
edges A that Kruskal’s has already selected to
include in the MST. e = (F, () is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
F to G using only edges in A because e does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:

* nodes reachable from G using edges in A

* All other nodes

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

33

Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Keep edges in a Disjoint-set
data structure (very fancy)
O(E logV)

34

@eral Msmm P /

Start with an empty tree A

Repeat V — 1 times:
Pick a cut (5,V — 5) which A respects (typically implicitly)
Add the min-weight edge which crosses (S,V —)

35

Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V —)

S is all endpoint of edges in
e is the min-weight edge that grows the

10 A0,

36

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

37

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

38

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

39

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e

40

Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

41

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17 ;

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

44

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17
3

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

45

	Slide 1: CSE 332 Autumn 2023 Lecture 26: Topological Sort and Minimum Spanning Trees
	Slide 2: Bank Account
	Slide 3: The Deadlock
	Slide 4: The Deadlock
	Slide 5: Resolving Deadlocks
	Slide 6: Option 1: Coarser Locking
	Slide 7: Option 2: Finer Critical Section
	Slide 8: Option 3: First Get All Locks In A Fixed Order
	Slide 9: Depth-First Search
	Slide 10: DFS (non-recursive)
	Slide 11: DFS Recursively (more common)
	Slide 12: Cycle Detection
	Slide 13: Topological Sort
	Slide 14: DFS Recursively
	Slide 15: DFS Recursively
	Slide 16: DFS: Topological sort
	Slide 17: Definition: Tree
	Slide 18: Definition: Tree
	Slide 19: Definition: Spanning Tree
	Slide 20: Definition: Minimum Spanning Tree
	Slide 21: Kruskal’s Algorithm
	Slide 22: Kruskal’s Algorithm
	Slide 23: Kruskal’s Algorithm
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Definition: Cut
	Slide 28: Cut Theorem
	Slide 29: Cut Theorem
	Slide 30: Cut Theorem
	Slide 31: Cut Theorem
	Slide 32: Cut Theorem
	Slide 33: Proof of Kruskal’s Algorithm
	Slide 34: Kruskal’s Algorithm Runtime
	Slide 35: General MST Algorithm
	Slide 36: Prim’s Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Dijkstra’s Algorithm
	Slide 43: Prim’s Algorithm
	Slide 44: Dijkstra’s Algorithm
	Slide 45: Prim’s Algorithm

