CSE 332 Autumn 2023 Lecture 25: Minimum Spanning Trees, P \& NP
 Nathan Brunelle
 http://www.cs.uw.edu/332

Kruskal's Algorithm

Start with an empty tree (A)
Add to A the lowest-weight edge that does not create a cycle

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree R, let $(S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V=$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Proof of Kruskal's Algorithm

Start with an empty tree A Repeat $V-1$ times:

Add the min-weight edge that doesn't

Proof: Suppose we have some arbitrary set of edges A that Kruskal's has already selected to include in the MST. $e=(F, G)$ is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint
\qquad
nodes reachable from G using edges in A
All other nodes
e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree A Repeat $V-1$ times:

Add the min-weight edge that doesn't

Keep edges in a Disjoint-set data structure (very fancy)

General MST Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut ($S, V-S$) which A respects (typically implicitly) Add the min-weight edge which crosses $(S, V-S)$

Prim's Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$
S is all endpoint of edges in A
e is the min-weight edge that grows the tree

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Keep edges in a Heap
$O_{(}(E \log V)$
Add the min-weight edge which connects to node in A with a node not in A

Dijkstra's Algorithm

int dijkstras(graph, start, end)\{

> PQ = new minheap();

PQ.insert(0 , start); // priority=0, value=start start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin(); if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{ new_dist = current.distance + weight(current,neighbor); if(neighbor.dist $!=\infty$) \{ PQ.insert(new_dist, neighbor);\} else if (new_dist < neighbor. distance) \{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Prim's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin();
if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{
new_dist = weight(current,neighbor);
if(neighbor.dist ! = ∞) \{ PQ.insert(new_dist, neighbor);\} else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Dijkstra's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin(); if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)

> new_dist =current.distance + weight(current,neighbor);
if(neighbor.dist ! $=\infty$) \{ PQ.insert(new_dist, neighbor);\}
else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Prim's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin();
if (current.known)\{ continue;\}
 current.known = true;
for (neighbor : current.neighbors)\{
if (!neighbor.known)\&
new_dist= weight(current,neighbor);
if(neighbor.dist != $\boldsymbol{\infty}$) PQ.insert(new_dist, neighbor);\}
else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

7 Bridges of Königsberg

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?

Euler Path Problem

- Path:

- A sequence of nodes v_{1}, v_{2}, \ldots such that for every consecutive pair are connected by an edge (i.e. (v_{i}, v_{i+1}) is an edge for each i in the path)
- Euler Path:
- A path such that every edge in the graph appears exactly once
- If the graph is not simple then some pairs need to appear multiple times!
- Euler path problem:
- Given an undirected graph $G=(V, E)$, does there exist an Euler path for G ?

Examples

- Which of the graphs below have an Euler path?

Euler's Theorem

- Agraph has an Euler Path if and only if it is connected and has exactly

Algorithm for the Euler Path Problem

- Given an undirected graph $G=(V, E)$, does there exist an Euler path for G ?
- Algorithm:
. Check if the graph is connected
- Check the degree of each node
- If the number of nodes with odd degree is 0 or 2 , return true
- Otherwise return false
- Running time?

A Seemingly Similar Problem

- Hamiltonian Path:
- A path that includes every node in the graph exactly once
- Hamiltonian Path Problem:
- Given a graph $G=(V, E)$, does that graph have a Hamiltonian Path?

Algorithms for the Hamiltonian Path Problem

Option 1:

- Explore all possible simple paths through the graph
- Check to see if any of those are length V
- Option 2
- Write down every sequence of nodes
- Check to see if any of those are a path
- Both options are examples of an Exhaustive Search ("Brute Force") algorithm

Option 2: List all sequences, look for a path

- Running time:
- $G=(V, E)$
- Number of permutations of V is $|V|$!

$$
n!=n \cdot(n-1) \cdot(n-2) ; \ldots \cdot 2 \cdot 1
$$

- How does n ! compare with z^{n} ?
- $n!\in \Omega\left(2^{n}\right)$

- Exponential running time!

Option 1: Explore all simple paths, check for one of length V

- Running time:
- $G=(V, E)$
- Number of paths

Pick a first node (|VY)

- Pick a neighbor (up 越严4-1 choices)
- Pick a neighbor (up to $|V|-2$ choices)
- Repeat $\langle V|-1$ total times

- Overall; $|V|!$ paths
- Exponential running time

Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running tinge exceeds 10^{25} years, we simply record the algorithm as

Tractability

- Tractable:
- Feasible to solve in the "real world"
- Intractable:
- Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
- For machine learning, big data, etc. tractable might mean $O(n)$ or even $O(\log n)$
- For most appilications it's more like $O\left(n^{3}\right)$ or $O\left(n^{2}\right)$
(A strange pattern:

- Most "natural" problems are either done in small-degree polynomial (e.g. n^{2}) or \geqslant else exponential time (e.g. 2^{n})
- It's rare to have problems which require a running time of n^{5} for example

Complexity Classes

- A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)
- The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)
- Examples:
- The set of all problems that can be solved by an algorithm with running time $O(n)$
- Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
- The set of all problems that can be solved by an algorithm with running time $O\left(n^{2}\right)$
- Contains: everything above as well as sorting, Euler path
- The set of all problems that can be solved by an algorithm with running time $O(n!)$
- Contains: everything we've seen in this class so far

Complexity Classes and Tractability

- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class P:
- Stands for "Polynomial"
- The set of problems which have an algorithm whose running time is $O\left(n^{p}\right)$ for some choice of $p \in \mathbb{R}$.
- We say all problems belonging to P are "Tractable"
- Complexity Class EXP:
- Stands for "Exponential"
- The set of problems which have an algorithm whose running time is $O\left(2^{n^{p}}\right)$ for some choice of $p \in \mathbb{R}$
- We say all problems belonging to $E X P-P$ are "Intractable"
- Disclaimer: Really it's all problems outside of P, and there are problems which do not belong to $E X P$, but we're not going to worry about those in this class

$E X P$ and P

Important!
 $P \subset E X P$

Members

Some of the problems listed in EXP could also be members of P Since membership is determined by a problems most efficient algorithm, knowing if a problem belongs to P requires knowing

Studying Complexity and Tractability

- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
- Find an efficient algorithm if it exists
- i.e. show it belongs to P
- Prove that no efficient algorithm exists
- i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
- If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
- It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$

Some problems in EXP seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
- It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
- It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
- It's easy to verify whether a given path is a Hamiltonian path

Class $N P$

- NP
- The set of problems for which a candidate solution can be verified in polynomial time
- Stands for "Non-deterministic Polynomial"
- Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
- Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search
- $P \subseteq N P$
- Why?

Solving and Verifying Hamiltonian Path

- Give an algorithm to solve Hamiltonian Path
- Input: $G=(V, E)$
- Output: True if G has a Hamiltonian Path
- Algorithm: Check whether each permutation of V is a path.
- Running time: $|V|$!, so does not show whether it belongs to P
- Give an algorithm to verify Hamiltonian Path
- Input: $G=(V, E)$ and a sequence of nodes
- Output: True if that sequence of nodes is a Hamiltonian Path
- Algorithm:
- Check that each node appears in the sequence exactly once
- Check that the sequence is a path
- Running time: $O(V \cdot E)$, so it belongs to $N P$

Party Problem

Draw Edges between people who don't get along
How many people can I invite to a party if everyone must get along?

Independent Set

- Independent set:
- $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Independent Set Problem:
- Given a graph $G=(V, E)$ and a number k, determine whether there is an independent set S of size k

Example

Solving and Verifying Independent Set

- Give an algorithm to solve independent set
- Input: $G=(V, E)$ and a number k
- Output: True if G has an independent set of size k
- Give an algorithm to verify independent set
- Input: $G=(V, E)$, a number k, and a set $S \subseteq V$
- Output: True if S is an independent set of size k

Generalized Baseball

Generalized Baseball

Vertex Cover

- Vertex Cover:
- $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Vertex Cover Problem:
- Given a graph $G=(V, E)$ and a number k, determine if there is a vertex cover C of size k

Example

Solving and Verifying Vertex Cover

- Give an algorithm to solve vertex cover
- Input: $G=(V, E)$ and a number k
- Output: True if G has a vertex cover of size k
- Give an algorithm to verify vertex cover
- Input: $G=(V, E)$, a number k, and a set $S \subseteq E$
- Output: True if S is a vertex cover of size k

$E X P \supset N P \supseteq P$

$P=N P$ or $P \subset N P$
 EXP
 Exponential

Upper bounded by $2^{n^{p}}$

Vertex Cover
Independent Set
Hamiltonian Path
Cryptography
Prime factorization
$N P$
Sorting
Shortest Path
Nondeterministic Polynomial
P Euler Path
Polynomial Upper bounded by n^{p}

Way Cool!

S is an independent set of G iff $V-S$ is a vertex cover of G

Vertex Cover

Way Cool!

S is an independent set of G iff $V-S$ is a vertex cover of G

Vertex Cover

Independent Set

Solving Vertex Cover and Independent Set

- Algorithm to solve vertex cover
- Input: $G=(V, E)$ and a number k
- Output: True if G has a vertex cover of size k
- Check if there is an Independent Set of G of size $|V|-k$
- Algorithm to solve independent set
- Input: $G=(V, E)$ and a number k
- Output: True if G has an independent set of size k
- Check if there is a Vertex Cover of G of size $|V|-k$

Either both problems belong to P, or else neither does!

NP-Complete

- A set of "together they stand, together they fall" problems
- The problems in this set either all belong to P, or none of them do
- Intuitively, the "hardest" problems in NP
- Collection of problems from $N P$ that can all be "transformed" into each other in polynomial time
- Like we could transform independent set to vertex cover, and vice-versa
- We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...

$E X P \supset N P-$ Complete $\supseteq N P \supseteq P$

$P=N P$ iff some problem from
NP - Complete belongs to P

Overview

- Problems not belonging to P are considered intractable
- The problems within $N P$ have some properties that make them seem like they might be tractable, but we've been unsuccessful with finding polynomial time algorithms for many
- The class $N P$ - Complete contains problems with the properties:
- All members are also members of $N P$
- All members of $N P$ can be transformed into every member of $N P-$ Complete
- Therefore if any one member of $N P$ - Complete belongs to P, then $P=N P$

Why should YOU care?

- If you can find a polynomial time algorithm for any $N P$ - Complete problem then:
- You will win $\$ 1$ million
- You will win a Turing Award
- You will be world famous
- You will have done something that no one else on Earth has been able to do in spite of the above!
- If you are told to write an algorithm a problem that is $N P$ - Complete
- You can tell that person everything above to set expectations
- Change the requirements!
- Approximate the solution: Instead of finding a path that visits every node, find a path that visits at least 75\% of the nodes
- Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
- Use Heuristics: Write an algorithm that's "good enough" for small inputs, ignore edge cases

