
CSE 332 Autumn 2023
Lecture 25: Minimum Spanning

Trees, P & NP
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Kruskal’s Algorithm

2

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

3

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

4

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

5

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

6

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Kruskal’s Algorithm

7

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of
edges 𝐴 that Kruskal’s has already selected to
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
𝐹 to G using only edges in 𝐴 because 𝑒 does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

Kruskal’s Algorithm Runtime

8

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

General MST Algorithm

9

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

10

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

11

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

12

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

13

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

14

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

15

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Dijkstra’s Algorithm

16

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = current.distance + weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Prim’s Algorithm

17

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm

18

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = current.distance + weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Prim’s Algorithm

19

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

7 Bridges of Königsberg

A

B

C

D

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among
these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path
starting at one landmass which crosses each bridge exactly once?

Euler Path Problem

• Path:
• A sequence of nodes 𝑣1, 𝑣2, … such that for every consecutive pair are

connected by an edge (i.e. (𝑣𝑖 , 𝑣𝑖+1) is an edge for each 𝑖 in the path)

• Euler Path:
• A path such that every edge in the graph appears exactly once

• If the graph is not simple then some pairs need to appear multiple times!

• Euler path problem:
• Given an undirected graph 𝐺 = (𝑉, 𝐸), does there exist an Euler path for 𝐺?

A

B

C

D

A

B

C

D

Examples

• Which of the graphs below have an Euler path?

A

B

C

D

A

B

C

D

No Euler path exists!
Euler path exists!

𝐴, 𝐵, 𝐷, 𝐴, 𝐶, 𝐷

A

B

C

D

Euler path exists!
𝐴, 𝐵, 𝐶, 𝐷, 𝐴, 𝐶, 𝐵, 𝐷

Euler’s Theorem

• A graph has an Euler Path if and only if it is connected and has exactly
0 or 2 nodes with odd degree.

A

B

C

D

A

B

C

D
A

B

C

D

Algorithm for the Euler Path Problem

• Given an undirected graph 𝐺 = (𝑉, 𝐸), does there exist an Euler path
for 𝐺?

• Algorithm:
• Check if the graph is connected

• Check the degree of each node

• If the number of nodes with odd degree is 0 or 2, return true

• Otherwise return false

• Running time?

A Seemingly Similar Problem

• Hamiltonian Path:
• A path that includes every node in the graph exactly once

• Hamiltonian Path Problem:
• Given a graph 𝐺 = (𝑉, 𝐸), does that graph have a Hamiltonian Path?

A

D

F
H

G

EC

B

True!
𝐴, 𝐵, 𝐶, 𝐸, 𝐺, 𝐻, 𝐹, 𝐷

Algorithms for the Hamiltonian Path Problem

• Option 1:
• Explore all possible simple paths through the graph

• Check to see if any of those are length 𝑉

• Option 2:
• Write down every sequence of nodes

• Check to see if any of those are a path

• Both options are examples of an Exhaustive Search (“Brute Force”)
algorithm

Option 2: List all sequences, look for a path

• Running time:
• 𝐺 = (𝑉, 𝐸)

• Number of permutations of 𝑉 is 𝑉 !
• 𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1

• How does 𝑛! compare with 2𝑛?
• 𝑛! ∈ Ω(2𝑛)

• Exponential running time!

Option 1: Explore all simple paths, check for
one of length 𝑉
• Running time:

• 𝐺 = (𝑉, 𝐸)

• Number of paths
• Pick a first node (|𝑉| choices)

• Pick a neighbor (up to 𝑉 − 1 choices)

• Pick a neighbor (up to 𝑉 − 2 choices)

• …. Repeat 𝑉 − 1 total times

• Overall: 𝑉 ! paths

• Exponential running time

A

B

C

D

E

Running Times

Input Size

Operations

Running times we’ve seen:
• Θ 1
• Θ log 𝑛
• Θ 𝑛
• Θ 𝑛 log 𝑛
• Θ 𝑛2

• Θ(2𝑛)

Running Times

Tractability

• Tractable:
• Feasible to solve in the “real world”

• Intractable:
• Infeasible to solve in the “real world”

• Whether a problem is considered “tractable” or “intractable” depends on
the use case
• For machine learning, big data, etc. tractable might mean O(𝑛) or even 𝑂(log 𝑛)
• For most applications it’s more like 𝑂 𝑛3 or 𝑂(𝑛2)

• A strange pattern:
• Most “natural” problems are either done in small-degree polynomial (e.g. 𝑛2) or

else exponential time (e.g. 2𝑛)
• It’s rare to have problems which require a running time of 𝑛5, for example

Complexity Classes

• A Complexity Class is a set of problems (e.g. sorting, Euler path,
Hamiltonian path)
• The problems included in a complexity class are those whose most efficient

algorithm has a specific upper bound on its running time (or memory use, or…)

• Examples:
• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛

• Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a
list, etc.

• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛2

• Contains: everything above as well as sorting, Euler path

• The set of all problems that can be solved by an algorithm with running time 𝑂 𝑛!
• Contains: everything we’ve seen in this class so far

Complexity Classes and Tractability

• To explore what problems are and are not tractable, we give some
complexity classes special names:

• Complexity Class 𝑃:
• Stands for “Polynomial”
• The set of problems which have an algorithm whose running time is 𝑂(𝑛𝑝) for some

choice of 𝑝 ∈ ℝ.
• We say all problems belonging to 𝑃 are “Tractable”

• Complexity Class 𝐸𝑋𝑃:
• Stands for “Exponential”

• The set of problems which have an algorithm whose running time is 𝑂 2𝑛𝑝
for

some choice of 𝑝 ∈ ℝ
• We say all problems belonging to 𝐸𝑋𝑃 − 𝑃 are “Intractable”

• Disclaimer: Really it’s all problems outside of 𝑃, and there are problems which do not belong
to 𝐸𝑋𝑃, but we’re not going to worry about those in this class

𝐸𝑋𝑃 and 𝑃

𝑃
Polynomial

Upper bounded by 𝑛𝑝

𝐸𝑋𝑃
Exponential

Upper bounded by 2𝑛𝑝

Tractable

Intractable

Important!
𝑃 ⊂ 𝐸𝑋𝑃

Every problem within 𝑃 is also within 𝐸𝑋𝑃
The intractable ones are the problems within 𝐸𝑋𝑃 but NOT 𝑃

Members

𝐸𝑋𝑃

Tractable

Intractable

Important!
Some of the problems listed in 𝐸𝑋𝑃 could also be members of 𝑃

Since membership is determined by a problems most efficient
algorithm, knowing if a problem belongs to 𝑃 requires knowing

the best algorithm possible!

𝑃 Sorting
Shortest Path

Euler Path

Hamiltonian Path
Longest Path
Vertex Cover

Independent Set
Satisfiability

Most Board Game Strategies

Studying Complexity and Tractability

• Organizing problems into complexity classes helps us to reason more
carefully and flexibly about tractability

• The goal for each problem is to either
• Find an efficient algorithm if it exists

• i.e. show it belongs to 𝑃

• Prove that no efficient algorithm exists
• i.e. show it does not belong to 𝑃

• Complexity classes allow us to reason about sets of problems at a
time, rather than each problem individually
• If we can find more precise classes to organize problems into, we might be

able to draw conclusions about the entire class
• It may be easier to show a problem belongs to class 𝐶 than to 𝑃, so it may

help to show that 𝐶 ⊆ 𝑃

Some problems in 𝐸𝑋𝑃 seem “easier”

• There are some problems that we do not have polynomial time
algorithms to solve, but provided answers are easy to check

• Hamiltonian Path:
• It’s “hard” to look at a graph and determine whether it has a Hamiltonian

Path

• It’s “easy” to look at a graph and a candidate path together and determine
whether THAT path is a Hamiltonian Path
• It’s easy to verify whether a given path is a Hamiltonian path

Class 𝑁𝑃

• 𝑁𝑃
• The set of problems for which a candidate solution can be verified in

polynomial time

• Stands for “Non-deterministic Polynomial”
• Corresponds to algorithms that can guess a solution (if it exists), that solution is then

verified to be correct in polynomial time

• Can also think of as allowing a special operation that allows the algorithm to magically
guess the right choice at each step of an exhaustive search

• 𝑃 ⊆ 𝑁𝑃
• Why?

𝐸𝑋𝑃 ⊃ 𝑁𝑃 ⊇ 𝑃
𝐸𝑋𝑃

Exponential

Upper bounded by 2𝑛𝑝

𝑃
Polynomial

Upper bounded by 𝑛𝑝

𝑁𝑃
Nondeterministic Polynomial

Verified in 𝑛𝑝 time

Solving and Verifying Hamiltonian Path

• Give an algorithm to solve Hamiltonian Path
• Input: 𝐺 = (𝑉, 𝐸)
• Output: True if 𝐺 has a Hamiltonian Path
• Algorithm: Check whether each permutation of 𝑉 is a path.

• Running time: 𝑉 !, so does not show whether it belongs to 𝑃

• Give an algorithm to verify Hamiltonian Path
• Input: 𝐺 = (𝑉, 𝐸) and a sequence of nodes
• Output: True if that sequence of nodes is a Hamiltonian Path
• Algorithm:

• Check that each node appears in the sequence exactly once
• Check that the sequence is a path
• Running time: 𝑂(𝑉 ⋅ 𝐸), so it belongs to 𝑁𝑃

Party Problem

41

Draw Edges between people who don’t get along
How many people can I invite to a party if everyone must get along?

Independent Set

• Independent set:
• 𝑆 ⊆ 𝑉 is an independent set if no two nodes in 𝑆 share an edge

• Independent Set Problem:
• Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, determine whether there is an

independent set 𝑆 of size 𝑘

42

Example

43

Independent set of size 6

Solving and Verifying Independent Set

• Give an algorithm to solve independent set
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has an independent set of size 𝑘

• Give an algorithm to verify independent set
• Input: 𝐺 = (𝑉, 𝐸),a number 𝑘, and a set 𝑆 ⊆ 𝑉

• Output: True if 𝑆 is an independent set of size 𝑘

Generalized Baseball

45

Generalized Baseball

46

Need to place defenders on bases
such that every edge is defended

How many defenders would suffice?

Vertex Cover

• Vertex Cover:
• 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has one of its endpoints in 𝐶

• Vertex Cover Problem:
• Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, determine if there is a vertex

cover 𝐶 of size 𝑘

47

Example

48

Vertex cover of size 5

Solving and Verifying Vertex Cover

• Give an algorithm to solve vertex cover
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has a vertex cover of size 𝑘

• Give an algorithm to verify vertex cover
• Input: 𝐺 = (𝑉, 𝐸),a number 𝑘, and a set 𝑆 ⊆ 𝐸

• Output: True if 𝑆 is a vertex cover of size 𝑘

𝐸𝑋𝑃
Exponential

Upper bounded by 2𝑛𝑝

𝑃
Polynomial

Upper bounded by 𝑛𝑝

𝑁𝑃
Nondeterministic Polynomial

Verified in 𝑛𝑝 time

Sorting
Shortest Path
Euler Path

Vertex Cover
Independent Set
Hamiltonian Path
Cryptography
Prime factorization

Checkers
Go
Chess

𝐸𝑋𝑃 ⊃ 𝑁𝑃 ⊇ 𝑃
𝑃 = 𝑁𝑃 or 𝑃 ⊂ 𝑁𝑃

Way Cool!

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

51

Independent Set
Vertex Cover

Way Cool!

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺

52

Independent SetVertex Cover

Solving Vertex Cover and Independent Set

• Algorithm to solve vertex cover
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has a vertex cover of size 𝑘
• Check if there is an Independent Set of 𝐺 of size 𝑉 − 𝑘

• Algorithm to solve independent set
• Input: 𝐺 = (𝑉, 𝐸) and a number 𝑘

• Output: True if 𝐺 has an independent set of size 𝑘
• Check if there is a Vertex Cover of 𝐺 of size 𝑉 − 𝑘

Either both problems belong
to 𝑃, or else neither does!

NP-Complete

• A set of “together they stand, together they fall” problems

• The problems in this set either all belong to 𝑃, or none of them do

• Intuitively, the “hardest” problems in NP

• Collection of problems from 𝑁𝑃 that can all be “transformed” into
each other in polynomial time
• Like we could transform independent set to vertex cover, and vice-versa

• We can also transform vertex cover into Hamiltonian path, and Hamiltonian
path into independent set, and …

𝐸𝑋𝑃 ⊃ 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ⊇ 𝑁𝑃 ⊇ 𝑃
𝑃 = 𝑁𝑃 iff some problem from
𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 belongs to 𝑃 𝐸𝑋𝑃

𝑃

𝑁𝑃

Sorting
Shortest Path
Euler Path

Cryptography
Prime factorization

Checkers
Go
Chess

Vertex Cover
Independent Set
Hamiltonian Path

Overview

• Problems not belonging to 𝑃 are considered intractable

• The problems within 𝑁𝑃 have some properties that make them seem
like they might be tractable, but we’ve been unsuccessful with finding
polynomial time algorithms for many

• The class 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 contains problems with the properties:
• All members are also members of 𝑁𝑃

• All members of 𝑁𝑃 can be transformed into every member of 𝑁𝑃 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒

• Therefore if any one member of 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 belongs to 𝑃, then 𝑃 = 𝑁𝑃

Why should YOU care?
• If you can find a polynomial time algorithm for any 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem then:

• You will win $1million

• You will win a Turing Award

• You will be world famous

• You will have done something that no one else on Earth has been able to do in spite of the
above!

• If you are told to write an algorithm a problem that is 𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
• You can tell that person everything above to set expectations

• Change the requirements!

• Approximate the solution: Instead of finding a path that visits every node, find a path that visits
at least 75% of the nodes

• Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree

• Use Heuristics: Write an algorithm that’s “good enough” for small inputs, ignore edge cases

	Slide 1: CSE 332 Autumn 2023 Lecture 25: Minimum Spanning Trees, P & NP
	Slide 2: Kruskal’s Algorithm
	Slide 3: Cut Theorem
	Slide 4: Cut Theorem
	Slide 5: Cut Theorem
	Slide 6: Cut Theorem
	Slide 7: Proof of Kruskal’s Algorithm
	Slide 8: Kruskal’s Algorithm Runtime
	Slide 9: General MST Algorithm
	Slide 10: Prim’s Algorithm
	Slide 11: Prim’s Algorithm
	Slide 12: Prim’s Algorithm
	Slide 13: Prim’s Algorithm
	Slide 14: Prim’s Algorithm
	Slide 15: Prim’s Algorithm
	Slide 16: Dijkstra’s Algorithm
	Slide 17: Prim’s Algorithm
	Slide 18: Dijkstra’s Algorithm
	Slide 19: Prim’s Algorithm
	Slide 20: 7 Bridges of Königsberg
	Slide 21: Euler Path Problem
	Slide 22: Examples
	Slide 23: Euler’s Theorem
	Slide 24: Algorithm for the Euler Path Problem
	Slide 25: A Seemingly Similar Problem
	Slide 26: Algorithms for the Hamiltonian Path Problem
	Slide 27: Option 2: List all sequences, look for a path
	Slide 28: Option 1: Explore all simple paths, check for one of length cap V
	Slide 29: Running Times
	Slide 30: Running Times
	Slide 31: Tractability
	Slide 32: Complexity Classes
	Slide 33: Complexity Classes and Tractability
	Slide 34: cap E cap X cap P and cap P
	Slide 35: Members
	Slide 36: Studying Complexity and Tractability
	Slide 37: Some problems in cap E cap X cap P seem “easier”
	Slide 38: Class cap N cap P
	Slide 39: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 40: Solving and Verifying Hamiltonian Path
	Slide 41: Party Problem
	Slide 42: Independent Set
	Slide 43: Example
	Slide 44: Solving and Verifying Independent Set
	Slide 45: Generalized Baseball
	Slide 46: Generalized Baseball
	Slide 47: Vertex Cover
	Slide 48: Example
	Slide 49: Solving and Verifying Vertex Cover
	Slide 50: cap E cap X cap P superset of cap N cap P superset or equals cap P
	Slide 51: Way Cool!
	Slide 52: Way Cool!
	Slide 53: Solving Vertex Cover and Independent Set
	Slide 54: NP-Complete
	Slide 55: cap E cap X cap P superset of cap N cap P minus cap C o m p l e t e superset or equals cap N cap P superset or equals cap P
	Slide 56: Overview
	Slide 57: Why should YOU care?

