CSE 332 Autumn 2023 Lecture 26: P & NP

Nathan Brunelle

http://www.cs.uw.edu/332

Tractability

- Tractable:
 - Feasible to solve in the "real world"
- Intractable:
 - Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
 - For machine learning, big data, etc. tractable might mean O(n) or even $O(\log n)$
 - For most applications it's more like $O(n^3)$ or $O(n^2)$
- A strange pattern:
 - Most "natural" problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 - It's rare to have problems which require a running time of n^5 , for example



Complexity Classes

- A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)
 - The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)

Examples:

The set of all problems that can be solved by an algorithm with running time Q(n)

- Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
- The set of all problems that can be solved by an algorithm with running time $O(n^2)$
 - Contains: everything above as well as sorting, Euler path
- The set of all problems that can be solved by an algorithm with running time O(n!)
 - Contains: everything we've seen in this class so far

Complexity Classes and Tractability

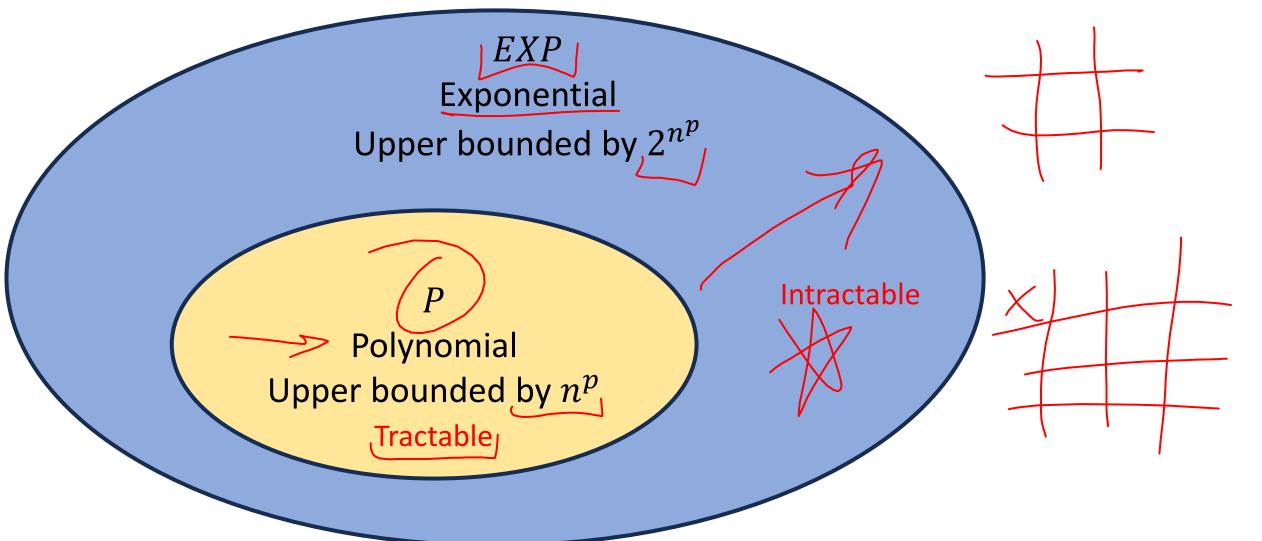
- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class P.
 - Stands for "Polynomial"
 - The set of problems which have an algorithm whose running time is $O(p^p)$ for some choice of $p \in \mathbb{R}$.
 - We say all problems belonging to P are "Tractable"
- Complexity Class *EXP*:
 - Stands for "Exponential"
 - The set of problems which have an algorithm whose running time is $O(2^{n^p})$ for some choice of $p \in \mathbb{R}$
 - We say all problems belonging to EXP P are "Intractable"
 - Disclaimer: Really it's all problems outside of P, and there are problems which do not belong to EXP, but we're not going to worry about those in this class

Important!

EXP and P

 $P \subset EXP$

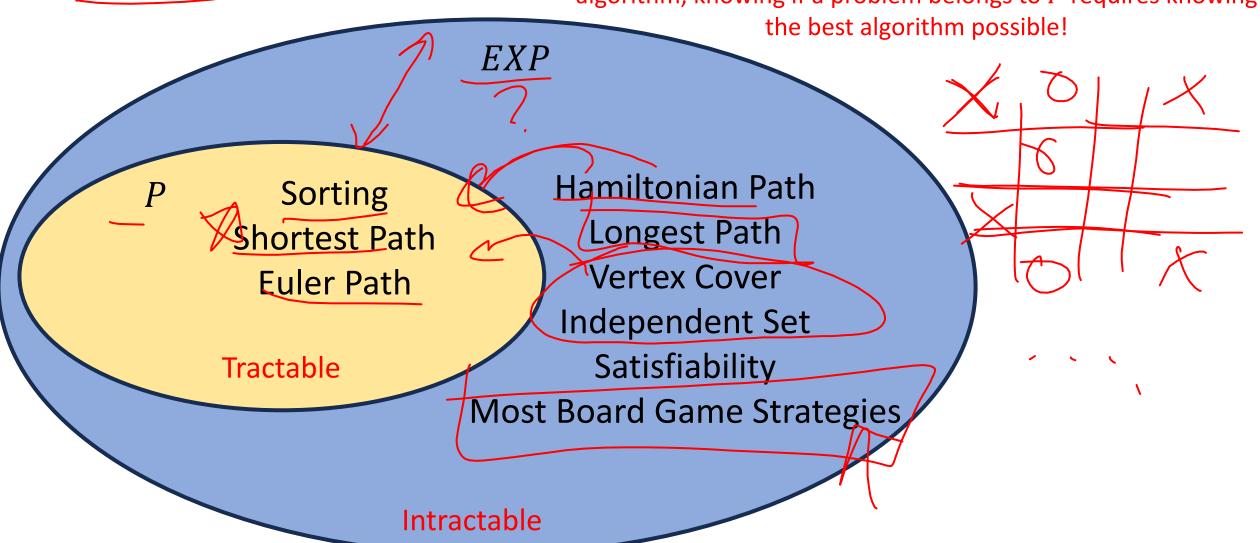
Every problem within ${\cal P}$ is also within ${\cal E}{\cal X}{\cal P}$ The intractable ones are the problems within ${\cal E}{\cal X}{\cal P}$ but NOT ${\cal P}$



Important!

Members

Some of the problems listed in EXP could also be members of P Since membership is determined by a problem's most efficient algorithm, knowing if a problem belongs to P requires knowing the best algorithm possible!



Studying Complexity and Tractability

- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
 - Find an efficient algorithm if it exists
 - i.e. show it belongs to P
 - Prove that no efficient algorithm exists
 - i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
 - If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
 - It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$

Some problems in *EXP* seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
 - It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
 - It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 - It's easy to verify whether a given path is a Hamiltonian path

gren inputy gness, he

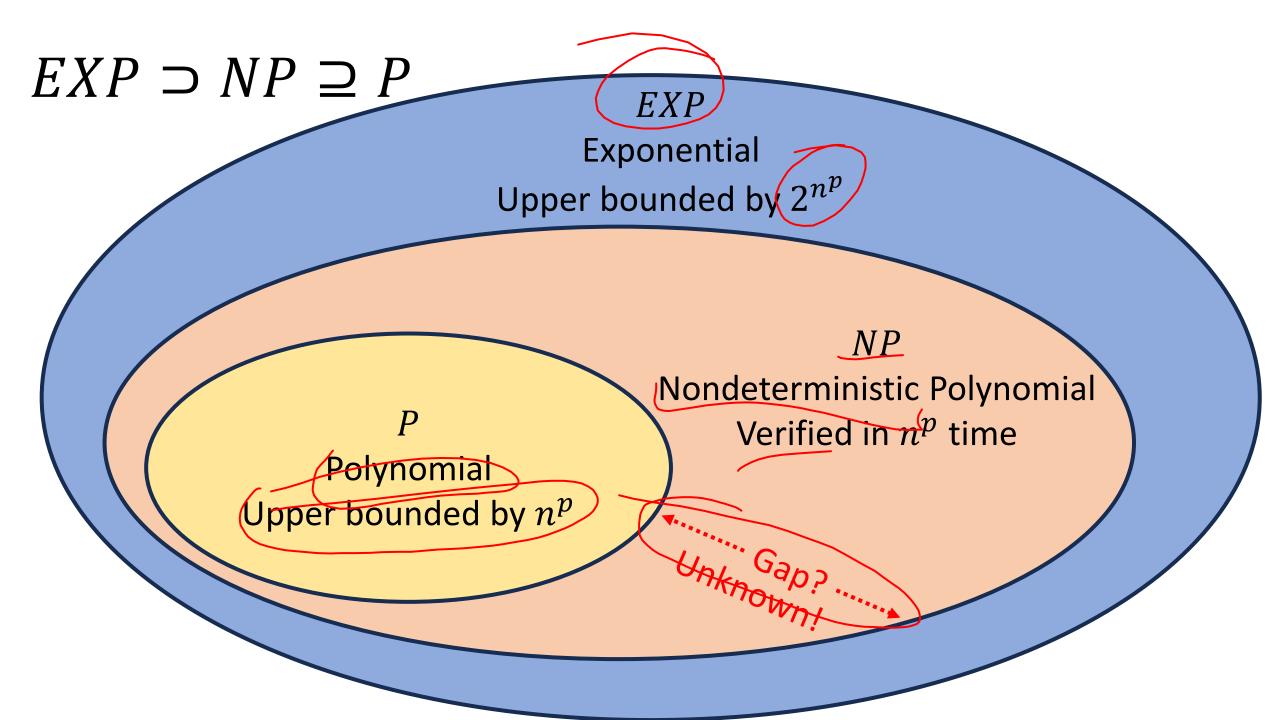
• |*NP*|

• The set of problems for which a candidate solution can be verified in polynomial time

Stands for "Non-deterministic Polynomial"

- Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
- Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search

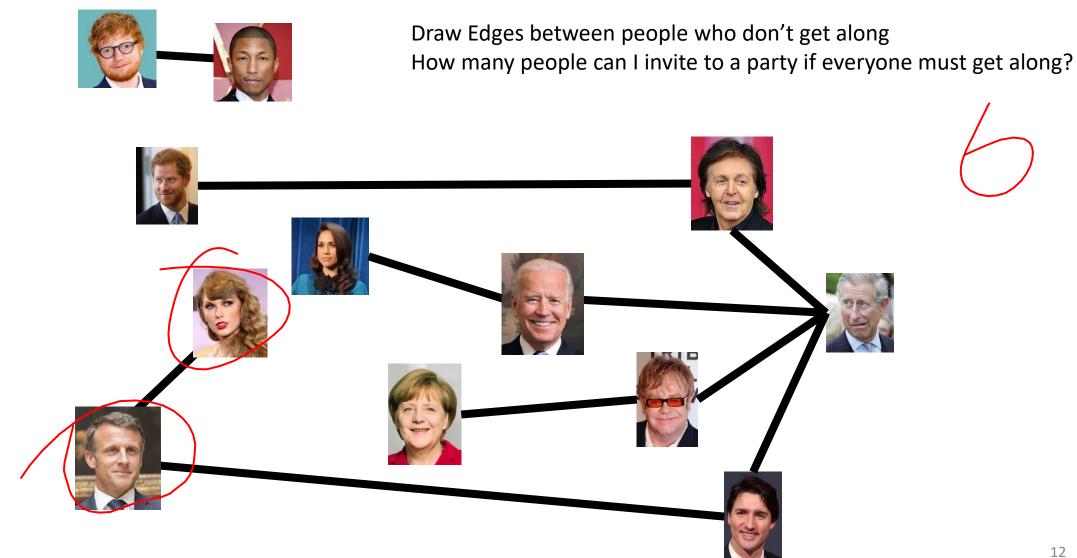
 $P \subseteq NP$ • Why?



Solving and Verifying Hamiltonian Path

- Give an algorithm to solve Hamiltonian Path
 - Input: G = (V, E)
 - Output: True if G has a Hamiltonian Path
 - Algorithm: Check whether each permutation of V is a path.
 - Running time: |V|!, so does not show whether it belongs to P
- Give an algorithm to verify Hamiltonian Path
 - Input: G = (V, E) and a sequence of nodes
 - Output: True if that sequence of nodes is a Hamiltonian Path
 - Algorithm:
 - Check that each hode appears in the sequence exactly once
 - Check that the sequence is a path
 - Running time: $O(V \cdot E)$, so it belongs to NP

Party Problem



Independent Set

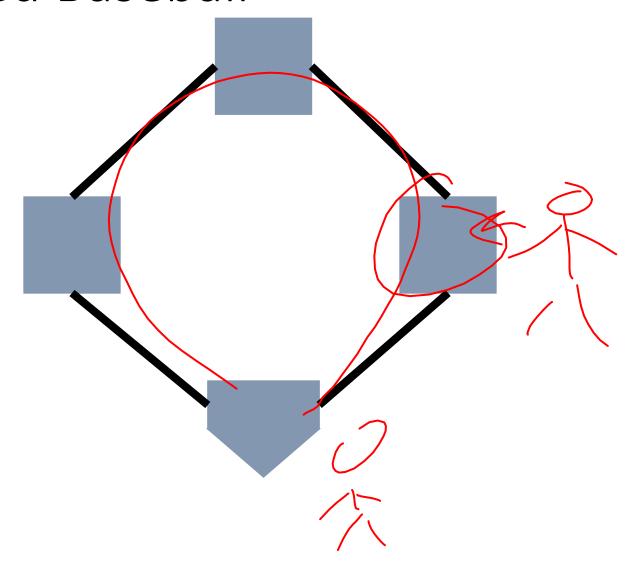
- Independent set:
 - •) $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Independent Set Problem:
 - Given a graph G = (V, E) and a number k, determine whether there is an independent set S of size k

Example Independent set of size 6

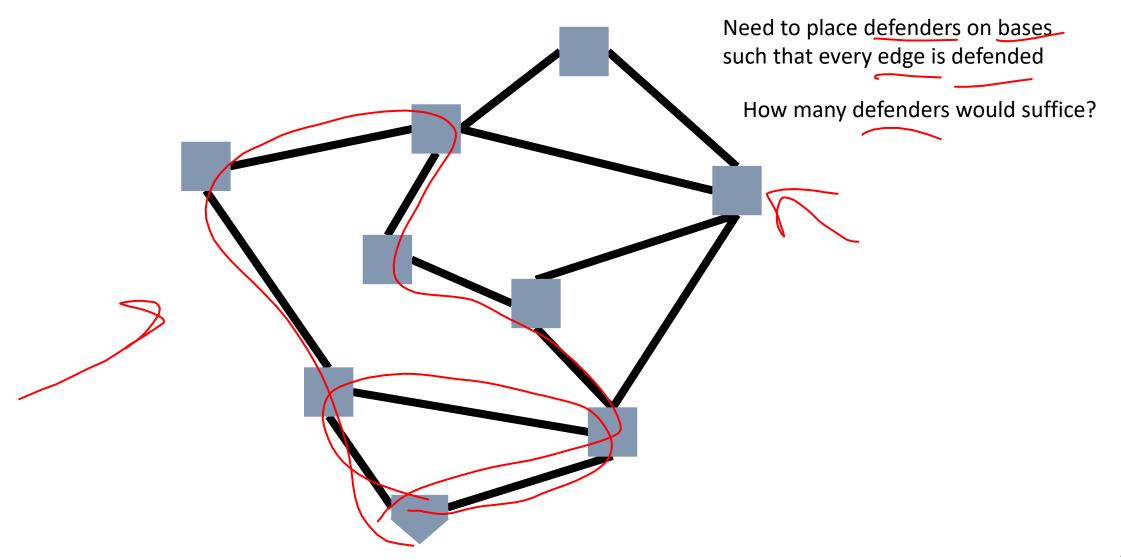
Solving and Verifying Independent Set (-

- Give an algorithm to solve independent set
 - Input: G = (V, E) and a number k
 - Output: True if G has an independent set of size k
- Give an algorithm to verify independent set
 - Input: G = (V, E), a number k, and a set $S \subseteq V$
 - Output: True if S is an independent set of size k

Generalized Baseball

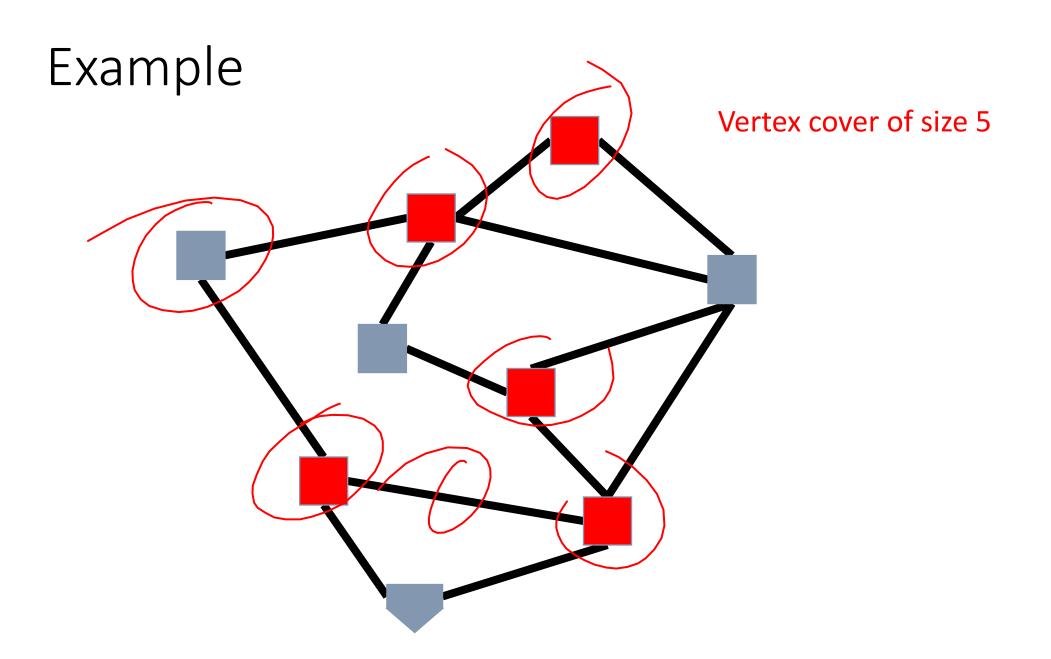


Generalized Baseball



Vertex Cover

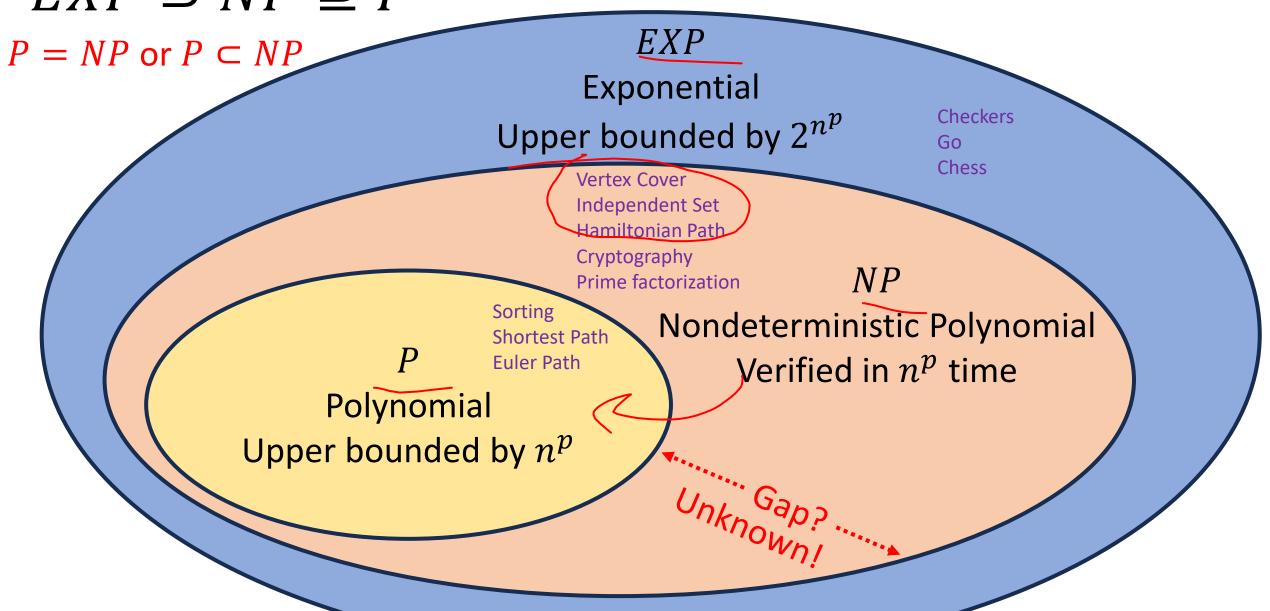
- Vertex Cover:
 - $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Vertex Cover Problem:
 - Given a graph G = (V, E) and a number k, determine if there is a vertex cover C of size k



Solving and Verifying Vertex Cover

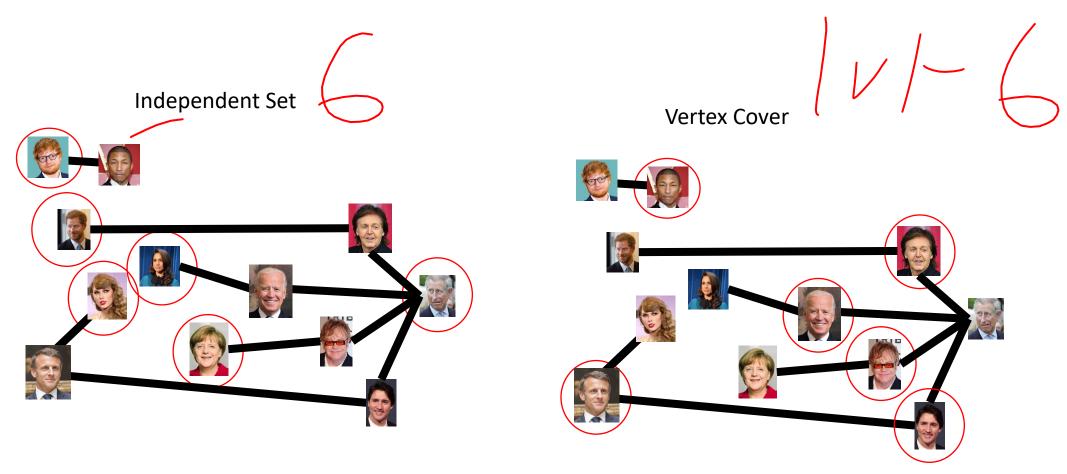
- Give an algorithm to solve vertex cover
 - Input: G = (V, E) and a number k
 - Output: True if G has a vertex cover of size k
- Give an algorithm to verify vertex cover
 - Input: G = (V, E), a number k, and a set $S \subseteq E$
 - Output: True if S is a vertex cover of size k

 $EXP \supset NP \supseteq P$



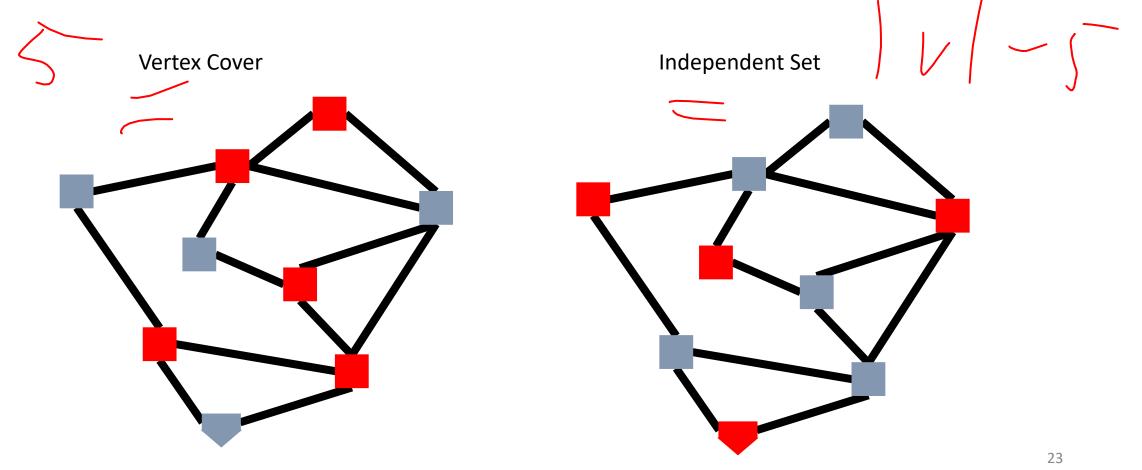
Way Cool!

S is an independent set of G iff V-S is a vertex cover of G



Way Cool!

S is an independent set of G iff V-S is a vertex cover of G



Solving Vertex Cover and Independent Set

- Algorithm to solve vertex cover
 - Input; G = (V, E) and a number k
 - Output: True if G has a vertex cover of size k
 - Check if there is an Independent Set of G of size |V|-k
- Algorithm to solve independent set
 - Input: G = (V, E) and a number k
 - Output: True if G has an independent set of size k
 - Check if there is a Vertex Cover of G of size |V|-k

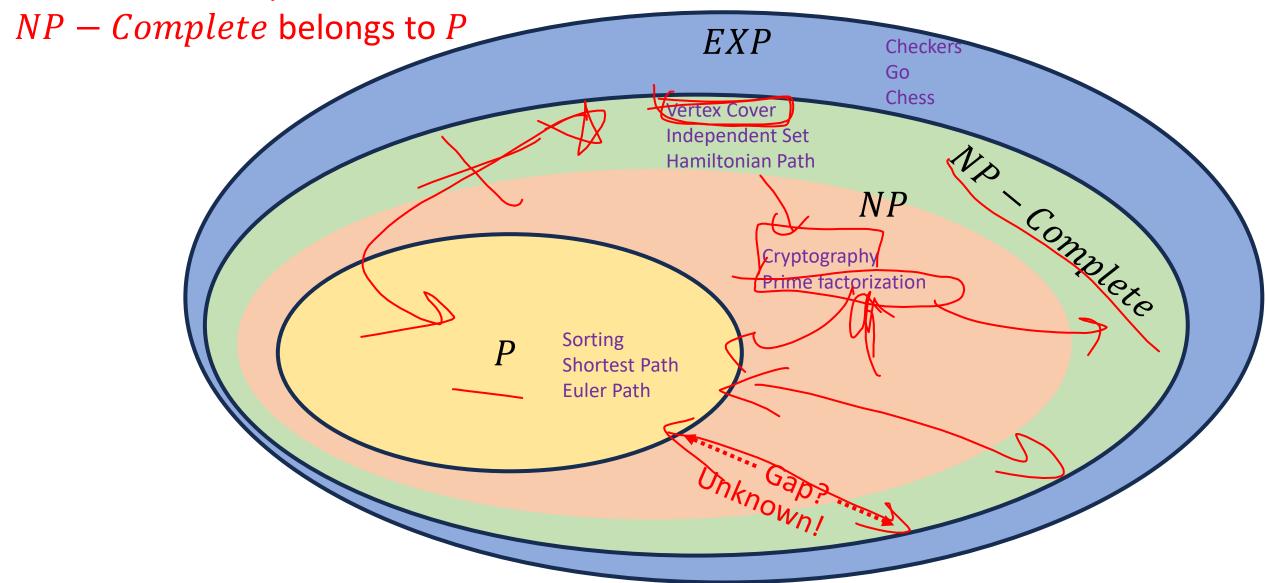
Either both problems belong to *P*, or else neither does!

NP-Complete \

- A set of "together they stand, together they fall" problems
- The problems in this set either all belong to P, or none of them do
- Intuitively, the "hardest" problems in NP
- Collection of problems from NP that can all be "transformed" into each other in polynomial time
 - Like we could transform independent set to vertex cover, and vice-versa
 - We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...

$EXP \supset NP - Complete \supseteq NP \supseteq P$

P = NP iff some problem from



Overview

- Problems not belonging to P_{l} are considered intractable
- The problems within *NP* have some properties that make them seem like they might be tractable, but we've been unsuccessful with finding polynomial time algorithms for many
- The class NP Complete contains problems with the properties:
 - All members are also members of NP
 - All members of NP can be transformed into every member of NP Complete
 - Therefore if any one member of NP Complete belongs to P, then P = NP

Why should YOU care?

- If you can find a polynomial time algorithm for any NP-Complete problem then:
 - You will win \$1million
 - You will win a Turing Award
 - You will be world famous
 - You will have done something that no one else on Earth has been able to do in spite of the above!
- If you are told to write an algorithm a problem that is NP Complete
 - You can tell that person everything above to set expectations
 - Change the requirements!
 - Approximate the solution: Instead of finding a path that visits every node, find a path that visits at least 75% of the nodes
 - Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
 - Use Heuristics: Write an algorithm that's "good enough" for small inputs, ignore edge cases