CSE 332 Autumn 2023 Lecture 2: Algorithm Analysis pt. 2

Nathan Brunelle
http://www.cs.uw.edu/332

Why Do resource Analysis?

- Allows us to compare lalgorithms, not implementations
- Using observations necessarily couples the algorithm with its implementation
- If my implementation on my computer takes more time than your implementation on your computer, we cannot conclude your algorithm is better
- We can predict an algorithm's running time before implementing
- Understand where the bottlenecks are in our algorithm

Goals for Algorithm Analysis

 $f(n)=n$- Identify a function which maps the algorithm's input size to a measure of resources used
- Domain of the function: sizes of the input
- Number of characters in a string, number of items in a list, number of pixels in an image
- Codomain of the function: counts of resources used
- Number of times the algorithm adds/two numbers together, number times the algorithm does a > or <comparison, maximum number of bytes of memory the algorithm uses at any time
- Important note: Make sure you know the "units" of your domain and codomain!

Worst Case Running Time Analysis

- If an algorithm has a worst case running time of $f(n)=n^{2}$ - Among all possible size- n inputs, the "worst" one will do $f(n)$ "operations" - I.e. $f(n)$ gives the maximum operation count from among all inputs of size n

$$
\begin{aligned}
& \longrightarrow f(n)=n \quad 49 n+.0 \mathrm{in} \\
& 1 \% \\
& x f(n)=n^{2}
\end{aligned}
$$

Worst Case Running Time - Example 2

Worst Case Running Time - General Guide

- Add together the time of consecutive statements
- Loops: Sum up the time required through each iteration of the loop - If each takes the same time, then [time per loop \times number of iterations]
- Conditionals: Sum together the time to check the condition and time of the slowest branch
- Function Calls: Time of the function's body
- Recursion; Solve a recurrence relation

Searching in a Sorted List

boolean linearSearch(array a, integer k)\{
for (i=0; i< a. length; $\overline{\mathrm{i}++})$ \{

\}
return false;

\}

Faster way? Can you think of a faster algorithm to solve this problem? divide arr in $1 / 2$ cheat, init's in ${ }^{2}$,sta $2^{n c}$ repent on that hal stop when find M, when |ar r1=1

$$
\begin{aligned}
& 5 \cdot n \approx 10 n \\
& \log _{2} n=\underbrace{C \cdot}_{\uparrow} \cdot \log _{10} n \\
& \sqrt{n} \quad \operatorname{logn}
\end{aligned}
$$

Comparing

Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
- Algorithm A's worst case running time is $10 n+900$
- Algorithm B's worst case running time is $100 n-50$
- Algorithm C's worst case running time is $\frac{n^{2}}{100}$
- Which algorithm is best?

Asymptotic Notation

- $O(g(n))$
- The set of functions with asymptotic behavior less than or equal to $g(n)$
- Upper-bounded by a constant times g for large enough values n
- $f \in O(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0} . f(n) \leq c \cdot g(n)$
- $\Omega(g(n))$
- the set of functions with asymptotic behavior greater than or equal to $g(n)$
- Lower-bounded by a constant times g for large enough values n
- $f \in \Omega(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0} . f(n) \geq c \cdot g(n)$
- $\Theta(g(n))$
- "Tightly" within constant of g for large n
- $\Omega(g(n)) \cap O(g(n))$

Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n>n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof:

Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof: Let $c=10$ and $n_{0}=6$. Show $\forall n \geq 6.10 n+100 \leq 10 n^{2}$

$$
\begin{aligned}
& 10 n+100 \leq 10 n^{2} \\
\equiv & n+10 \leq n^{2} \\
\equiv & 10 \leq n^{2}-n \\
\equiv & 10 \leq n(n-1)
\end{aligned}
$$

This is True because $n(n-1)$ is strictly increasing and 6(6-1) >10

Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof:

Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof: let $c=12$ and $n_{0}=50$. Show $\forall n \geq 50.13 n^{2}-50 n \geq 12 n^{2}$

$$
\begin{aligned}
& 13 n^{2}-50 n \geq 12 n^{2} \\
\equiv & n^{2}-50 n \geq 0 \\
\equiv & n^{2} \geq 50 n \\
\equiv & n \geq 50
\end{aligned}
$$

This is certainly true $\forall n \geq 50$.

Asymptotic Notation Example

- Show: $n^{2} \notin O(n)$

Asymptotic Notation Example

- To Show: $n^{2} \notin O(n)$

Proof by

Contradiction!

- Technique: Contradiction
- Proof: Assume $n^{2} \in O(n)$. Then $\exists c, n_{0}>0$ s.t. $\forall n>n_{0}, n^{2} \leq c n$

Let us derive constant c. For all $n>n_{0}>0$, we know:
$c n \geq n^{2}$,
$c \geq n$.
Since c is lower bounded by n, c cannot be a constant and make this
True.
Contradiction. Therefore $n^{2} \notin O(n)$.

Gaining Intuition

- When doing asymptotic analysis of functions:
- If multiple expressions are added together, ignore all but the "biggest"
- If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n)+g(n) \in \Theta(f(n))$
- Ignore all multiplicative constants
- $f(n)+c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
- Ignore bases of logarithms
- Do NOT ignore:
- Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
- Logarithms themselves
- Examples:
- $4 n+5$
- $0.5 n \log n+2 n+7$
- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

More Examples

- Is each of the following True or False?
- $4+3 n \in O(n)$
- $n+2 \log n \in O(\log n)$
- $\log n+2 \in O(1)$
- $n^{50} \in O\left(1.1^{n}\right)$
- $3^{n} \in \Theta\left(2^{n}\right)$

Common Categories

- $O(1)$ "constant"
- $O(\log n)$ "logarithmic"
- $O(n)$ "linear"
- $O(n \log n)$ "log-linear"
- $O\left(n^{2}\right)$ "quadratic"
- $O\left(n^{3}\right) \quad$ "cubic"
- $O\left(n^{k}\right)$ "polynomial"
- $O\left(k^{n}\right)$ "exponential"

Defining your running time function

- Worst-case complexity:
- max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
- min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
- avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
- max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

