CSE 332 Winter 2024 Lecture 4: Algorithm Analysis and Priority Queues
 Nathan Brunelle
 http://www.cs.uw.edu/332

$$
\frac{1+2+3+4+5+\ldots+n}{\frac{n \cdot(n+1)}{2}}
$$

Goals for Algorithm Analysis

- Identify dofunction which maps the algorithm's input size to a measure of resources used
- Domain of the function: sizes of the input
- Number of characters in a string, number of items in a list, number of pixels in an image
- Codomain of the function: counts of resources used
- Number of times the algorithm adds two numbers together, number times the algorithm does a > or < comparison, maximum number of bytes of memory the algorithm uses at any time
- Important note: Make sure you know the "units" of your domain and codomain!
- Domain = inputs to the function
- Codomain = outputs to the function

Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
- Algorithm A's worst case running time is $10 n+900$
- Algorithm B's worst case running time is $100 n-50$

- Algorithm C's worst case running time is $\frac{n^{2}}{100}$

1

- Which algorithm is best?

What we need

- A way of comparing functions that:
- Ignores constants and non-dominant terms
- Looks at long term trends
- Ignores "small" inputs

Asymptotic Notation

- $O(g(n))$
- The set of functions with asymptotic behavior less than or equal to $g(n)$
- Upper-bounded by a constant times g for large enqugh values n
- $f \in O(g(n)) \equiv \exists c>0 . \exists n_{0}>0$. $\forall n \geq n_{0}$. $\left.f(n) \leq\right) c \cdot g(n)$

- the set of functions with asymptotic behavior greater than or equal to $g(n)$
- Lower-bounded by a constant times g for large enough values n
- $f \in \Omega(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0 . f} f(n) \geq g \cdot g(n)$
- $\Theta(g(n))$
"Tightly" within constant of g for large n
- $\Omega(g(n)) \cap O(g(n))$
- $f(n) \in O(g(n))$
- $f(n) " \leq " g(n)$
- Eventually $c \cdot g(n)$ will become and stay bigger
- An algorithm whose running time is $f(n)$ will eventually do fewer operations than an algorithm whose running time is $g(n)$
- An algorithm whose running time is $f(n)$ is faster than an algorithm whose running time is $g(n)$

Asymptotic Notation Example
 - Technique: find values, >0 and $n_{0}>g$ such that $\forall n>n_{0} .10 n+100 \leq c \cdot n^{2}$, (η) - Proof:

$$
\begin{aligned}
& \text { Proof: } 10 n+100 \leq 1 n^{2} \quad E=10 \\
& 10 n+100 \leq 10 n^{2} \quad n=10 \\
&-10 n^{2}+10 n+100 \leq 0 \\
&-10\left(n^{2}-n-10\right) \leq 0
\end{aligned}
$$

Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof: Let $c=10$ and $n_{0}=6$. Show $\forall n \geq 6.10 n+100 \leq 10 n^{2}$

$$
\begin{aligned}
& 10 n+100 \leq 10 n^{2} \\
\equiv & n+10 \leq n^{2} \\
\equiv & 10 \leq n^{2}-n \\
\equiv & 10 \leq n(n-1)
\end{aligned}
$$

This is True because $n(n-1)$ is strictly increasing and 6(6-1) >10

Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof:

Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof: let $c=12$ and $n_{0}=50$. Show $\forall n \geq 50.13 n^{2}-50 n \geq 12 n^{2}$

$$
\begin{aligned}
& 13 n^{2}-50 n \geq 12 n^{2} \\
\equiv & n^{2}-50 n \geq 0 \\
\equiv & n^{2} \geq 50 n \\
\equiv & n \geq 50
\end{aligned}
$$

This is certainly true $\forall n \geq 50$.

Asymptotic Notation Example

- Show: $n^{2} \notin O(n)$

$$
\text { . } \forall n \geq x^{n} \dot{c}
$$

$$
\begin{aligned}
& \forall c, \forall n, \\
& \forall c \forall n, \exists n>n, f(n)>c_{y} m_{n} \\
& n^{2} \leqslant c \\
& n \leqslant c
\end{aligned}
$$

Asymptotic Notation Example

- To Show: $n^{2} \notin O(n)$

Proof by

Contradiction!

- Technique: Contradiction
- Proof: Assume $n^{2} \in O(n)$ Then $\exists c, n_{0}>0$ s.t. $\forall n>n_{0}, n^{2} \leq c n$ Let us derive constant c. For all $n>n_{0}>0$, we know:
$c n \geq n^{2}$,
$c \geq n$.
Since c is lower bounded by n, c cannot be a constant and make this True.
Contradiction. Therefore $n^{2} \notin O(n)$.

Gaining Intuition

- When doing asymptotic analysis of functions:
- If multiple expressions are added together, ignore alt but the "biggest"
- If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n)+g(n) \in \Theta(f(n))$
- Ignore all multiplicative constants
- $f(n)+c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
- Ignore bases of logarithms
- Do NOT ignore:

$$
\left.2^{n} 25\right\}^{n}
$$

- Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
- Logarithms themselves
- Examples:
- $4 n+5$
- $0.5 n \log n+2 n+7$

- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

More Examples

- Is each of the following True or False?
- $4+3 n \in O(n)$
- $n+2 \log n \in O(\log n)$
- $\log n+2 \in O(1)$
- $n^{50} \in O\left(1.1^{n}\right)$
- $3^{n} \in \Theta\left(2^{n}\right)$

Common Categories

- $O(1)$ "constant"
- $O(\log n)$ "logarithmic"
- O(n) "linear"
- $O(n \log n)$ "log-linear"
- $O\left(n^{2}\right)$ "quadratic"
- $O\left(n^{3}\right) \quad$ "cubic"
- $O\left(\eta^{k}\right)$ "polynomial"
- $O\left(k^{n}\right)$ "exponential"

Defining your running time function

- Worst-case complexity:
- max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
- min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
- avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
- max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

- What is it?

- A "First In First Out" (FIFO) collection of items
- What Operations do we need?
- Enqueue
- Add a new item to the queue
- Dequeue
- Remove the "oldest" item from the queue
- Is_empty
- Indicate whether or not there are items still on the queue

ADT: Priority Queue

- What is it?
- A collection of items and their "priorities"
- Allows quick access/removal to the "top priority" thing
- What Operations do we need?
- insert(item, priority)
- Add a new item to the PQ with indicated priority
- Usually, smaller priority value means more important
- deleteMin
- Remove and return the "top priority" item from the queue
- Is_empty
- Indicate whether or not there are items still on the queue
- Note: the "priority" value can be any type/class so long as it's comparable (i.e. you can use "<" or "compareTo" with it)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Applications?

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to deleteMin
Unsorted Array		
Unsorted Linked List		
Sorted Circular Array		
Sorted Linked List		
Binary Search Tree		

Note: Assume we know the maximum size of the PQ in advance

