
CSE 332 Winter 2024
Lecture 4: Algorithm Analysis

and Priority Queues
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Warm Up

Give the worst case running time for the following code

doSomething(List myList){

n = myList.size();

x = 0;

for (i=0; i < n; i++){

for (j=0; j < i; j++){

x++;

}

}

return x;

}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Goals for Algorithm Analysis

• Identify a function which maps the algorithm’s input size to a measure
of resources used
• Domain of the function: sizes of the input

• Number of characters in a string, number of items in a list, number of pixels in an image

• Codomain of the function: counts of resources used
• Number of times the algorithm adds two numbers together, number times the algorithm

does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time

• Important note: Make sure you know the “units” of your domain and
codomain!
• Domain = inputs to the function
• Codomain = outputs to the function

Comparing

Comparing Running Times

• Suppose I have these algorithms, all of which have the same
input/output behavior:
• Algorithm A’s worst case running time is 10𝑛 + 900

• Algorithm B’s worst case running time is 100𝑛 − 50

• Algorithm C’s worst case running time is
𝑛2

100

• Which algorithm is best?

What we need

• A way of comparing functions that:
• Ignores constants and non-dominant terms

• Looks at long term trends
• Ignores “small” inputs

𝑓(𝑛) = 𝑂(𝑔 𝑛)

𝑓(𝑛) = Θ(𝑔 𝑛)

𝑓(𝑛) = Ω(𝑔 𝑛)

Asymptotic Notation

• 𝑂 𝑔 𝑛
• The set of functions with asymptotic behavior less than or equal to 𝑔 𝑛
• Upper-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ 𝑂 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

• Ω(𝑔 𝑛)
• the set of functions with asymptotic behavior greater than or equal to 𝑔 𝑛
• Lower-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ Ω 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

• Θ 𝑔 𝑛
• “Tightly” within constant of 𝑔 for large 𝑛

• Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)

• 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛
• 𝑓 𝑛 " ≤ "𝑔(𝑛)

• Eventually 𝑐 ⋅ 𝑔(𝑛) will become and stay bigger

• An algorithm whose running time is 𝑓(𝑛) will eventually do fewer operations
than an algorithm whose running time is 𝑔(𝑛)

• An algorithm whose running time is 𝑓(𝑛) is faster than an algorithm whose
running time is 𝑔 𝑛

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 > 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof:

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof: Let 𝑐 = 10 and 𝑛0 = 6. Show ∀𝑛 ≥ 6.10𝑛 + 100 ≤ 10𝑛2

10𝑛 + 100 ≤ 10𝑛2

≡ 𝑛 + 10 ≤ 𝑛2

≡ 10 ≤ 𝑛2 − 𝑛

≡ 10 ≤ 𝑛 𝑛 − 1

This is True because 𝑛(𝑛 − 1) is strictly increasing and 6 6 − 1 > 10

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛
2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof:

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛
2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof: let 𝑐 = 12 and 𝑛0 = 50. Show ∀𝑛 ≥ 50. 13𝑛2 − 50𝑛 ≥ 12𝑛2

13𝑛2 − 50𝑛 ≥ 12𝑛2

≡ 𝑛2 − 50𝑛 ≥ 0

≡ 𝑛2 ≥ 50𝑛

≡ 𝑛 ≥ 50

This is certainly true ∀𝑛 ≥ 50.

Asymptotic Notation Example

• Show: 𝑛2 ∉ 𝑂 𝑛

Asymptotic Notation Example

• To Show: 𝑛2 ∉ 𝑂 𝑛
• Technique: Contradiction

• Proof: Assume 𝑛2 ∈ 𝑂 𝑛 . Then ∃𝑐, 𝑛0 > 0 s. t. ∀𝑛 > 𝑛0, 𝑛
2 ≤ 𝑐𝑛

Let us derive constant 𝑐. For all 𝑛 > 𝑛0 > 0, we know:
𝑐𝑛 ≥ 𝑛2,
𝑐 ≥ 𝑛.

Since 𝑐 is lower bounded by 𝑛, 𝑐 cannot be a constant and make this
True.
Contradiction. Therefore 𝑛2 ∉ 𝑂 𝑛 .

Proof by
Contradiction!

Gaining Intuition

• When doing asymptotic analysis of functions:
• If multiple expressions are added together, ignore all but the “biggest”

• If 𝑓(𝑛) grows asymptotically faster than 𝑔(𝑛), then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑓 𝑛

• Ignore all multiplicative constants
• 𝑓 𝑛 + 𝑐 ∈ Θ 𝑓 𝑛 for any constant 𝑐 ∈ ℝ

• Ignore bases of logarithms
• Do NOT ignore:

• Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
• Logarithms themselves

• Examples:
• 4𝑛 + 5

• 0.5𝑛log 𝑛 + 2𝑛 + 7
• 𝑛3 + 2𝑛 + 3𝑛
• 𝑛log(10𝑛2)

More Examples

• Is each of the following True or False?
• 4 + 3𝑛 ∈ 𝑂(𝑛)

• 𝑛 + 2 log 𝑛 ∈ 𝑂(log 𝑛)

• log 𝑛 + 2 ∈ 𝑂(1)

• 𝑛50 ∈ 𝑂(1.1𝑛)

• 3𝑛 ∈ Θ(2𝑛)

Common Categories

• 𝑂(1) “constant”

• 𝑂 log 𝑛 “logarithmic”

• 𝑂 𝑛 “linear”

• 𝑂 𝑛 log 𝑛 “log-linear”

• 𝑂 𝑛2 “quadratic”

• 𝑂 𝑛3 “cubic”

• 𝑂 𝑛𝑘 “polynomial”

• 𝑂 𝑘𝑛 “exponential”

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging”

consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

• What is it?
• A “First In First Out” (FIFO) collection of items

• What Operations do we need?
• Enqueue

• Add a new item to the queue

• Dequeue
• Remove the “oldest” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• Usually, smaller priority value means more important

• deleteMin
• Remove and return the “top priority” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Priority Queue, example
PriorityQueue PQ = new PriorityQueue();

PQ.insert(5,5)

PQ.insert(6,6)

PQ.insert(1,1)

PQ.insert(3,3)

PQ.insert(8,8)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Priority Queue, example
PriorityQueue PQ = new PriorityQueue();

PQ.insert(5,5)

PQ.insert(6,6)

PQ.insert(1,1)

Print(PQ.deleteMin)

PQ.insert(3,3)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

PQ.insert(8,8)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Applications?

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array

Unsorted Linked List

Sorted Circular Array

Sorted Linked List

Binary Search Tree

Note: Assume we know the maximum size of the PQ in advance

	Slide 1: CSE 332 Winter 2024 Lecture 4: Algorithm Analysis and Priority Queues
	Slide 2: Warm Up
	Slide 3
	Slide 4: Goals for Algorithm Analysis
	Slide 5: Comparing
	Slide 6: Comparing Running Times
	Slide 7: What we need
	Slide 8
	Slide 9: Asymptotic Notation
	Slide 10
	Slide 11: Asymptotic Notation Example
	Slide 12: Asymptotic Notation Example
	Slide 13: Asymptotic Notation Example
	Slide 14: Asymptotic Notation Example
	Slide 15: Asymptotic Notation Example
	Slide 16: Asymptotic Notation Example
	Slide 17: Gaining Intuition
	Slide 18: More Examples
	Slide 19: Common Categories
	Slide 20: Defining your running time function
	Slide 21: ADT: Queue
	Slide 22: ADT: Priority Queue
	Slide 23: Priority Queue, example
	Slide 24: Priority Queue, example
	Slide 25: Applications?
	Slide 26: Thinking through implementations

