CSE 332 Winter 2024 Lecture 4: Algorithm Analysis and Priority Queues

Nathan Brunelle

http://www.cs.uw.edu/332

Warm Up

Give the worst case running time for the following code

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
 - How many times will it run?
 - How long does it take to run?
 - Does this change with the input size?

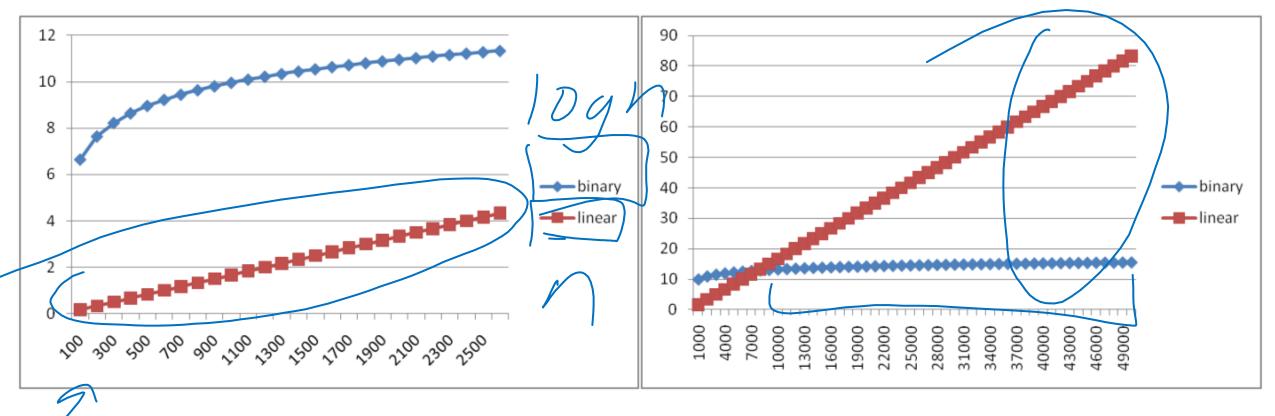
```
doSomething(List myList){
     n = myList.size();
     x = 0;
     for (i=0; i < n; i++){}
       for (j=0; j < i; j++){
            X++;
     return x;
```

+1+2+3+4+5+ +4-1+4-2+h-3+... h+1 + か+1 ナ n x 1

Goals for Algorithm Analysis

- Identify a *function* which maps the algorithm's input size to a measure of resources used
 - Domain of the function: sizes of the input
 - Number of characters in a string, number of items in a list, number of pixels in an image
 - Codomain of the function: counts of resources used
 - Number of times the algorithm adds two numbers together, number times the algorithm does a > or < comparison, maximum number of bytes of memory the algorithm uses at any time
- Important note: Make sure you know the "units" of your domain and codomain!
 - Domain = inputs to the function
 - Codomain = outputs to the function

Comparing

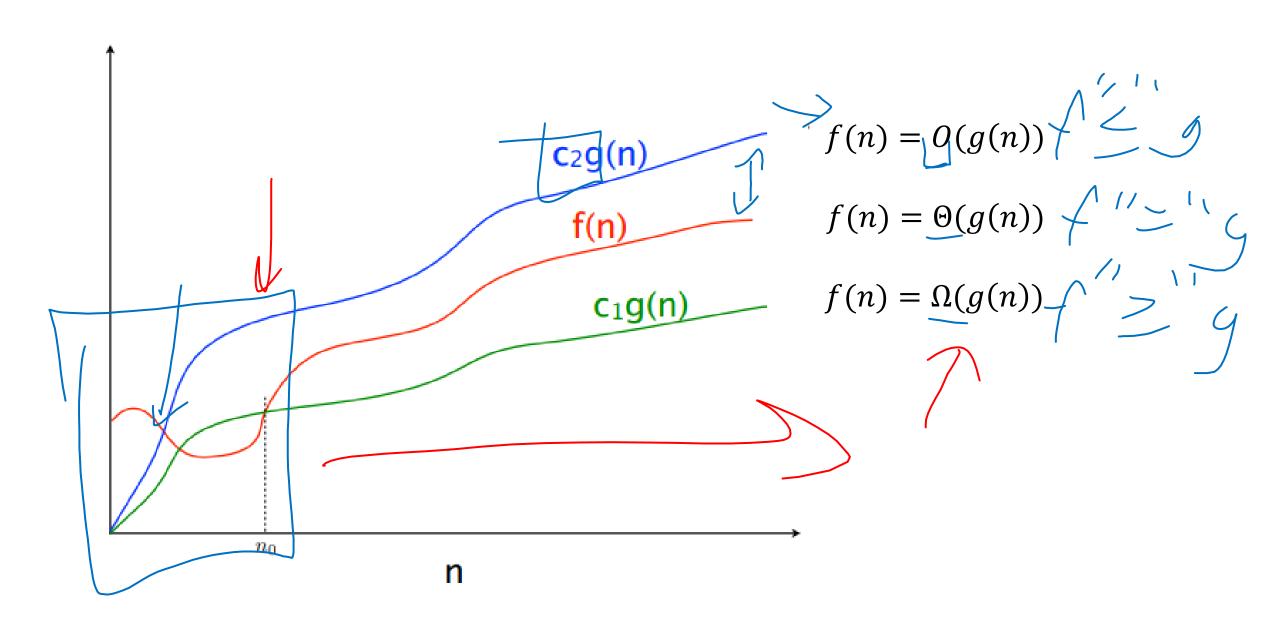


Comparing Running Times

- Suppose I have these algorithms, all of which have the same input/output behavior:
 - Algorithm A's worst case running time is 10n + 900
 - Algorithm B's worst case running time is 100n 50
 - Algorithm C's worst case running time is $\frac{n^2}{100}$
- Which algorithm is best?

What we need

- A way of comparing functions that:
 - Ignores constants and non-dominant terms
 - Looks at long term trends
 - Ignores "small" inputs



Asymptotic Notation

1 (h) 5 h

- $\bullet O(g(n))$
 - The set of functions with asymptotic behavior less than or equal to g(n)
 - Upper-bounded by a constant times g for large enough values n
 - $f \in O(g(n)) \equiv \exists c > 0. \exists n_0 > 0 \quad \forall n \ge n_0. f(n) \le 0 \cdot g(n)$
- $\Omega(g(n))$
 - the **set of functions** with asymptotic behavior greater than or equal to g(n)
 - Lower-bounded by a constant times g for large enough values n
 - $f \in \Omega(g(n)) \equiv \exists c > 0, \exists n_0 > 0, \forall n \ge n_0, f(n) \ge c \cdot g(n)$
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\Omega(g(n)) \cap O(g(n))$

 $\exists c>o(\exists m>0) (\forall m>n)$ $\int (> 0 -) n_{j} > 0$ $\frac{1}{2} \left(\left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2}$

Asymptotic Notation Example _____

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n>n_0$. $10n+100\leq c\cdot n^2$
 - Proof:

- Show: $10n + 100 \in O(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0.$ $10n+100\leq c\cdot n^2$
 - **Proof:** Let c = 10 and $n_0 = 6$. Show $\forall n \geq 6.10n + 100 \leq 10n^2$ $10n + 100 \leq 10n^2$
 - $\equiv n + 10 \le n^2$
 - $\equiv 10 \le n^2 n$
 - $\equiv 10 \le n(n-1)$

This is True because n(n-1) is strictly increasing and 6(6-1) > 10

1+50CM) (= 2 1750 <u>L</u> 174

- Show: $13n^2 50n \in \Omega(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0$. $13n^2-50n\geq c\cdot n^2$
 - Proof:

- Show: $13n^2 50n \in \Omega(n^2)$
 - **Technique:** find values c>0 and $n_0>0$ such that $\forall n\geq n_0$. $13n^2-50n\geq c\cdot n^2$
 - **Proof:** let c = 12 and $n_0 = 50$. Show $\forall n \geq 50.13n^2 50n \geq 12n^2$ $13n^2 50n \geq 12n^2$ $\equiv n^2 50n \geq 0$ $\equiv n^2 \geq 50n$ $\equiv n \geq 50$

This is certainly true $\forall n \geq 50$.

• To Show: $n^2 \notin O(n)$

Proof by Contradiction!

Technique: Contradiction

• **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s. t. $\forall n > n_0, n^2 \le cn$ Let us derive constant c. For all $n > n_0 > 0$, we know: $cn \ge n^2$, $c \ge n$.

Since c is lower bounded by n, c cannot be a constant and make this True.

Contradiction. Therefore $n^2 \notin O(n)$.

Gaining Intuition

- When doing asymptotic analysis of functions:
 - If multiple expressions are added together, ignore all but the "biggest"
 - If f(n) grows asymptotically faster than g(n), then $f(n) + g(n) \in \Theta(f(n))$
 - Ignore all multiplicative constants
 - $f(n) + c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
 - Ignore bases of logarithms
 - Do NOT ignore:
 - Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
 - Logarithms themselves
- Examples:
 - 4n + 5
 - $0.5n\log n + 2n + 7$
 - $n^3 + 2^n + 3n$
 - $n\log(10n^2)$

g. in exponents, bases of exponents)

 $n^2 m^3$

More Examples

- Is each of the following True or False?
 - $4 + 3n \in O(n)$
 - $n + 2 \log n \in O(\log n)$
 - $\log n + 2 \in O(1)$
 - $n^{50} \in O(1.1^n)$
 - $3^n \in \Theta(2^n)$

Common Categories

- O(1) "constant"
- $O(\log n)$ "logarithmic"
- O(n) "linear"
- $O(n \log n)$ "log-linear"
- $O(n^2)$ "quadratic"
- $O(n^3)$ "cubic"
- $O(n^k)$ "polynomial"
- $O(k^n)$ "exponential"

Defining your running time function

- Worst-case complexity:
 - max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
 - min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
 - avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
 - max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

- What is it?
 - A "First In First Out" (FIFO) collection of items
- What Operations do we need?
 - Enqueue
 - Add a new item to the queue
 - Dequeue
 - Remove the "oldest" item from the queue
 - Is_empty
 - Indicate whether or not there are items still on the queue

ADT: Priority Queue

- What is it?
 - A collection of items and their "priorities"
 - Allows quick access/removal to the "top priority" thing
- What Operations do we need?
 - insert(item, priority)
 - Add a new item to the PQ with indicated priority
 - Usually, smaller priority value means more important
 - deleteMin
 - Remove and return the "top priority" item from the queue
 - Is_empty
 - Indicate whether or not there are items still on the queue
- Note: the "priority" value can be any type/class so long as it's comparable (i.e. you can use "<" or "compareTo" with it)

Priority Queue, example

```
PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
```

Priority Queue, example

```
PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
```

Applications?

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to deleteMin
Unsorted Array		
Unsorted Linked List		
Sorted Circular Array		
Sorted Linked List		
Binary Search Tree		

Note: Assume we know the maximum size of the PQ in advance