
CSE 332 Winter 2024
Lecture 6: Priority Queues and

recurrences
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• Usually, smaller priority value means more important

• deleteMin
• Remove and return the “top priority” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 𝑛

Binary Heap Θ log 𝑛 Θ log 𝑛

Note: Assume we know the maximum size of the PQ in advance

Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right

1

3 2

4 7 5 6

5 9

Tree T

(Min) Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “(Min) Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority
• Max Heap Property: every node’s priority is ≥ its children

1

3 2

4 7 5 6

5 9

Representing a Heap

• Every complete binary tree with the same
number of nodes uses the same positions
and edges

• Use an array to represent the heap

• Index of root:

• Parent of node 𝑖:

• Left child of node 𝑖:

• Right child of node 𝑖:

• Location of the leaves:

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9

Representing a Heap
• Every complete binary tree with the same

number of nodes uses the same positions
and edges

• Use an array to represent the heap

• Index of root: 1

• Parent of node 𝑖:
𝑖

2

• Left child of node 𝑖: 2𝑖

• Right child of node 𝑖: 2𝑖 + 1

• Location of the leaves: last
𝑛

2

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9

Representing a Heap
• Every complete binary tree with the same

number of nodes uses the same positions
and edges

• Use an array to represent the heap

• Index of root: 0

• Parent of node 𝑖:
𝑖+1

2
− 1

• Left child of node 𝑖: 2 𝑖 + 1 − 1

• Right child of node 𝑖: 2(𝑖 + 1)

• Location of the leaves: last
𝑛

2

1

3 2

4 7 5 6

5 9

0

1 2

3 54 6

7 8

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8

Insert Psuedocode

insert(item){

if(size == arr.length – 1){resize();}

size++;

arr[i] = item;

percolateUp(i)

}

1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

1 3 2 4 7 5 6 5 9

0 1 2 3 4 5 6 7 8 9 10

Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}

1

3 2

4 7 5 6

5 9

1.5

Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}

1

3 2

4 7 5 6

5 9 1.5

Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}

1

3 2

4 1.5 5 6

5 9 7

Percolate Up

Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}

1

1.5 2

4 3 5 6

5 9 7

Percolate Up

Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}

7

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}

7

7 2

4 3 5 6

5 9

Percolate Down

Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}

7

3 2

4 7 5 6

5 9

Percolate Down

Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}

7

3 2

4 7 5 6

5 9

Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛

Percolate Up

percolateUp(int i){

int parent = i/2; \\ index of parent

Item val = arr[i]; \\ value at current location

while(i > 1 && arr[i].priority < arr[parent].priority){ \\ until location is root or heap property holds

arr[i] = arr[parent]; \\ move parent value to this location

arr[parent] = val; \\ put current value into parent’s location

i = parent; \\ make current location the parent

parent = i/2; \\ update new parent

}

}

DeleteMin Psuedocode

deleteMin(){

theMin = arr[1];

arr[1] = arr[size];

size--;

percolateDown(1);

return theMin;

}

Percolate Down
percolateDown(int i){

int left = i*2; \\ index of left child

int right = i*2+1; \\ index of right child

Item val = arr[i]; \\ value at location

while(left <= size){ \\ until location is leaf

int toSwap = right;

if(right > size || arr[left].priority < arr[right] .priority){ \\ if there is no right child or if left child is smaller

toSwap = left; \\ swap with left

} \\ now toSwap has the smaller of left/right, or left if right does not exist

if (arr[toSwap] .priority < val.priority){ \\ if the smaller child is less than the current value

arr[i] = arr[toSwap];

arr[toSwap] = val; \\ swap parent with smaller child

i = toSwap; \\ update current node to be smaller child

left = i*2;

right = i*2+1;

}

else{ return;} \\ if we don’t swap, then heap property holds

}

}

Other Operations

• Increase Key
• Given the index of an item in the PQ, make its priority value larger

• Min Heap: Then percolate down

• Max Heap: Then percolate up

• Decrease Key
• Given the index of an item in the PQ, make its priority value smaller

• Min Heap: Then percolate up

• Max Heap: Then percolate down

• Remove
• Given the item at the given index from the PQ

Binary Search

search(value, sortedArr){
return helper(value, sortedArr, 0, sortedArr.length);

}
helper(value, arr, low, high){

if (low == high){ return false; }
mid = (high + low) / 2;
if (arr[mid] == value){ return true; }
if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
else { return helper(value, arr, low, mid); }

}

Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done at that step

• Usually:

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer”

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”

How Efficient Is It?

• 𝑇 𝑛 = 1 + 𝑇
𝑛

2

• Base case: 𝑇 1 = 1

𝑇 𝑛 = “cost” of running the entire
algorithm on an array of length 𝑛

27

Let’s Solve the Recurrence!

𝑇 𝑛 = 1 + 𝑇(ൗ𝑛
2)

𝑇 1 = 1

1 + 𝑇(ൗ𝑛
4)

1 + 𝑇(ൗ𝑛
8)

1

Substitute until 𝑇(1)
So log2 𝑛 steps

𝑇 𝑛 = ෍

𝑖=1

log2𝑛

1 = log2 𝑛 𝑇 𝑛 ∈ Θ log 𝑛

28

Recursive Linear Search

search(value, list){
if(list.isEmpty()){

return false;
{
if (value == list[0]){

return true;
}
list.remove(0);
return search(value, list);

}

Unrolling Method

• Repeatedly substitute the recursive part of the recurrence

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

• 𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

• 𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

• …

• 𝑇 𝑛 = 𝑐 + 𝑐 + 𝑐 + ⋯ + 𝑐
• How many 𝑐’s?

Recursive List Summation

sum(list){

return sum_helper(list, 0, list.size);

}

sum_helper(list, low, high){

if (low == high){ return 0; }

if (low == high-1){ return list[low]; }

middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}

Loop Unrolling Method

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐

Loop Unrolling Method

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐

• 𝑇 𝑛 = 2 2𝑇
𝑛

4
+ 𝑐 + 𝑐 = 4𝑇

𝑛

4
+ 3𝑐

• 𝑇 𝑛 = 4 2𝑇
𝑛

8
+ 𝑐 + 3𝑐 = 8𝑇

𝑛

8
+ 7𝑐

• …after 𝑖 − 1 substitutions

• 𝑇 𝑛 = 2𝑖𝑇
𝑛

2𝑖 + 2𝑖 − 1 𝑐

• 𝑇
𝑛

2𝑖 = 𝑇(1) when 𝑖 = log2 𝑛

• 𝑇 𝑛 = 2log2 𝑛𝑇 1 + 2log2 𝑛 − 1 𝑐 = 𝑛 ⋅ 𝑐0 + 𝑐𝑛 − 𝑐 = Θ(𝑛)

Tree Method

 2𝑖 ⋅ 𝑐 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑐

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐

𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Recursive List Summation

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

= 𝑐 ⋅ ෍

𝑖=1

log2 𝑛

2𝑖

= 𝑐
1 − 2log2 𝑛

1 − 2

	Slide 1: CSE 332 Winter 2024 Lecture 6: Priority Queues and recurrences
	Slide 2: ADT: Priority Queue
	Slide 3: Thinking through implementations
	Slide 4: Trees for Heaps
	Slide 5: (Min) Heap Data Structure
	Slide 6: Representing a Heap
	Slide 7: Representing a Heap
	Slide 8: Representing a Heap
	Slide 9: Insert Psuedocode
	Slide 10: Heap Insert
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap deleteMin
	Slide 16: Heap deleteMin
	Slide 17: Heap deleteMin
	Slide 18: Heap deleteMin
	Slide 19: Heap deleteMin
	Slide 20: Percolate Up and Down (for a Min Heap)
	Slide 21: Percolate Up
	Slide 22: DeleteMin Psuedocode
	Slide 23: Percolate Down
	Slide 24: Other Operations
	Slide 25: Binary Search
	Slide 26: Analysis of Recursive Algorithms
	Slide 27: How Efficient Is It?
	Slide 28: Let’s Solve the Recurrence!
	Slide 29
	Slide 30: Recursive Linear Search
	Slide 31: Unrolling Method
	Slide 32: Recursive List Summation
	Slide 33: Loop Unrolling Method
	Slide 34: Loop Unrolling Method
	Slide 35: Tree Method
	Slide 36: Recursive List Summation

