CSE 332 Winter 2024
Lecture 6: Priority Queues and

recurrences
W

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

ADT: Priority Queue

* What is it?
* A collection of items and their “priorities”
 Allows quick access/removal to the “top priority” thing

* What Operations do we need?
* insert(item, priority)
/7 * Add a new item to the PQ with indicated priority
e Usually, smaller priority value means more important

* deleteMin
/) * Remove and return the “top priority” item from the queue
* |s_empty —

* Indicate whether or not thére are items still on the queue

* Note: the “priority” value can be any type/class so long as it’s comparable

(i.e. you can use “<“ or “compareTo” with it)

Thinking through implementations

Data Structure Worst cacse time to insert Worst case time to deleteMin

Unsorted Array
HW
0(1)
n

Unsorted Linked List
O(n)

Sorted Array
Sorted Linked List
Binary Hea\p} O(logn)

Binary Search Tree

Note: Assume we know the maximum size of the PQ in advance

Trees for Heaps

* Binary Trees:

* The branching factor is 2
* Every node has < 2 children

e Complete Tree:
-
* All “layers” are full, except the bottom
* Bottom layer filled left-to-right

(Min) Heap Data Structure
/

* Keep items in a complete binary tree

* Maintain the “(Min) Heap Property” of the tree
e Every node’s priority is < its children’s priority

———

* Max Heap Property: every node’s priority is = its children

Representing a Heap 13 |2)a|7|s]6|5]|09

0 1 2 3 4 5 6 7/ 8

* Every complete binary tree with the same
number of nodes uses the same positions (\\
and edges = —

e Use an array to represent the heap

* Index of root: (

e Parent of node i: L/J
e Left child of node i:

* Right child of node i: QL L /
. Locatlon of the leaves:

Representinga Heap st [:+]3|2|*|7 5|6 |5

* Every complete binary tree with the same
number of nodes uses the same positions
and edges

e Use an array to represent the heap
* Index of root:

e Parent of node i:

e Left child of node i:
* Right child of node i:

e Location of the leaves:

Representing a Heap 13 |2)a|7|s]6|5]|09

. . 0 1 2 3 4 5 6 7/ 8
* Every complete binary tree with the same %

number of nodes uses the same positions \ A1
and edges m

e Use an array to represent the heap
* Index of root:

e Parent of node i:

e Left child of node i:
* Right child of node i:

e Location of the leaves:

Insert Psuedocode 1 (3] 2]a|7|5|6]|5]o9

insert(item){
if(size == arr.length — 1){resize();}
Size++;
arr[i] = item;
percolateUp(i)

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent

H | t G
eap Inser
(2 (2]
O ONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent

H | t G
eap Inser
(2 (2]
0 ® O &

insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up

Heap Insert

insert(item){
put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){
swap item with parent — Percolate Up

—

H | t ’
eap Inser
() (2]
ONNONROENO

insert(item){
put item in the “next open” spot (keep tree complete)
while (item.priority < parent(item).priority){
swap item with parent

(%

Heap deleteMin
() O
. O O OO
deleteMin(){

min = root G g ‘

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min

(7
Heap deleteMin
o220
deleteMin(){ a a 6 °

min = root G g

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min

Heap deleteMin

deleteMin(){
min = root
br = bottom-right item
move br to the root
while(br > either of its children){
swap br with its smallest child — pgrcolate Down

}

return min

Heap deleteMin

deleteMin(){
min = root
br = bottom-right item
move br to the root
while(br > either of its children){
swap br with its smallest child — pgrcolate Down

}

return min

deleteMin(){
min = root G g

br = bottom-right item

move br to the root

while(br > either of its children){
swap br with its smallest child

}

return min

Percolate Up and Down (for a Min Heap)

. — |

e Goal: restore the “Heap Property”
/_\

* Percolate Up:

* Take a node that may be smaller than a parent, repeatedly swap with a parent
until it is larger than its parent

* Percolate Down:

-
* Take a node that may be larger than one of its children, repeatedly swap with

smallest child until both children are larger

* Worst case running time of each:

* O(logn)
/

Percolate Up

percolateUp(int i){
int parent =i/2; \\ index of parent
ltem val = arr[i]; \\ value at current location
while(i > 1 && arr[i].priority < arr[parent].priority){ \\ until location is root or heap property holds
arr[i] = arr[parent]; \\ move parent value to this location
arr[parent] = val; \\ put current value into parent’s location
i = parent; \\ make current location the parent

parent =i/2; \\ update new parent

DeleteMin Psuedocode

deleteMin(){
theMin = arr[1];
arr[1] = arr[size];
Size--;
percolateDown(1);
return theMin;

Percolate Down

percolateDown(int i){
int left =i*2; \\ index of left child
int right =i*2+1; \\ index of right child
ltem val = arr[i]; \\ value at location
while(left <=size){ \\ until location is leaf
int toSwap = right;
if(right > size | | arr[left].priority < arr[right] .priority){ \\ if there is no right child or if left child is smaller
toSwap = left; \\ swap with left
}\\ now toSwap has the smaller of left/right, or left if right does not exist
if (arr[toSwap] .priority < val.priority){ \\ if the smaller child is less than the current value
arr[i] = arr[toSwap];
arr[toSwap] = val; \\ swap parent with smaller child
i = toSwap; \\ update current node to be smaller child
left = i*2;
right = i*2+1;
}

else{ return;} \\ if we don’t swap, then heap property holds

Other Operations

Increase KeyS
/ iven the index of an item in the PQ, make its priority value larger

* Min Heap: Walal.e_dmml

e Max Heap: Then percolate up

D crease Key ‘

* Given the index of an item in the PQ, make its priority value smaller
* Min Heap: 1\I\en percolate up/
* Max Heap: Then percolate down

* Remove (
\°/Gi:/e\n(41e item at the given index from the PQ

Bln ySearc)
7= —

- [
G =
S archw, sortedArr){

return helper(value, sortedArr, O, sortedArr.length);

}
helper(value, arr, low, high){ O

(low == high){ return false; } —
mid = (high + low) / 2;
if (@rr[mid value){ return_}ru/e‘r

if (arWd]<vaIue){ return elper(value arr, mid+1, high)

Analysis of Recursive Algorithms

e Overall structure of recursion:
Do some non-recursive “work” (L
* Do one or more recursive calls on some portion of your input —
Do some more non-recursive “work” —
* Repeat until you reach a base case

°Runn|ngt|me iT:m;i) (p, t -+ T(p,) Hf(n
gorit

* Thetimeit takes to ru an mput It of size n is:
 The sum of how long it takes to run the same algorithm on each smaller input
e Plus the total amount of non-recursive work done at that step

e Usually:
« T(n) =a-T(§)+f(n)

* Called “divide and conquer”
*T(m) =T —c)+ f(n)

e Called “chip and conquer”

How Efficient Is It?

n T(n) = “cost” of running the entire
* T(n) =1+T ([ED algorithm on an array of length n

* Basecase:T(1) =1

27

Let’s Solve the Recurrence! | (?) — /747/5/
T(1) =1 —

= T

_ Substitute until T(1)
So log, n steps

Recursive Linear Search T(h/=Cr 77” - /)

/ 7’(/) =
search(@e,li\sk’g/)_{ \«/

if(list.isEmpty()){
return false;

: A Td1SE,

if (value ==list[O] { Q
return true;

}

return search{value, list); 7/ (-)
} p— |

' T [o — = 77 L1 -
Unrolling Method 7 () 2)
* Repeatedly substitute the recursive part of the recurrence
cT(n)=Tn—-1) +c
ﬁ-T(n) =T(n—2)+c+c

* T(n) =LT(n—3)-IL+c+c

:;(n)=(c4%+c+:/ (,(/“«/)
* How many c¢’s? I/W
|

G ()

2T,]
Begurswceij/ C a!z)on) [~ (
\ I
§ ist){]/\/
return;sum heIp r(list, O, list.size);
e N

sum helper(lw j
.
| if (low == hlgh{retur@ Q 77 -

if (Iow = high-1){ return list[low]; }

i = (high+low)/2; B
return Wr list, low, middle) + sum_helper(list, middle, high);
_ ndaie _
} T (= — —
- /

(=)

Loop Unrolling Method T(V)/ pz // Lf)%é
T =37() “i(ﬂ/ ff/fc)+

-—-‘7’/7/1—;/51/\%<

Loop Unrolling Method

e T(n) = 2T (3) +c

2
. T(n) =2(2T(g)+c)+c=@g
« T(n) =4+3c;@8T(§) +&c£

), —

e .afteri—1 substltutlonsog I

N\ ,
-@i) (@@L 20 20—

T(1) wheni =log, n

e T(n) = %1"/’32"T(1)+(21°g2" 1)c=n-co+cn—c=®(n)

e

Tree Method

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = ZT(

n

C

n
2

/\

n/2

C

—

n/4

C

n/4

AN

I

)+

n/2 ¢

.

n/4 ° n/4
VAN
1 1 11

— 2% . ¢ work per level

>log, 1 levels
of recursion

log, n

T(n) = z AR

=1

o

Recursive List Summation

log, n

T(n) = zzi-c

=1

	Slide 1: CSE 332 Winter 2024 Lecture 6: Priority Queues and recurrences
	Slide 2: ADT: Priority Queue
	Slide 3: Thinking through implementations
	Slide 4: Trees for Heaps
	Slide 5: (Min) Heap Data Structure
	Slide 6: Representing a Heap
	Slide 7: Representing a Heap
	Slide 8: Representing a Heap
	Slide 9: Insert Psuedocode
	Slide 10: Heap Insert
	Slide 11: Heap Insert
	Slide 12: Heap Insert
	Slide 13: Heap Insert
	Slide 14: Heap Insert
	Slide 15: Heap deleteMin
	Slide 16: Heap deleteMin
	Slide 17: Heap deleteMin
	Slide 18: Heap deleteMin
	Slide 19: Heap deleteMin
	Slide 20: Percolate Up and Down (for a Min Heap)
	Slide 21: Percolate Up
	Slide 22: DeleteMin Psuedocode
	Slide 23: Percolate Down
	Slide 24: Other Operations
	Slide 25: Binary Search
	Slide 26: Analysis of Recursive Algorithms
	Slide 27: How Efficient Is It?
	Slide 28: Let’s Solve the Recurrence!
	Slide 29
	Slide 30: Recursive Linear Search
	Slide 31: Unrolling Method
	Slide 32: Recursive List Summation
	Slide 33: Loop Unrolling Method
	Slide 34: Loop Unrolling Method
	Slide 35: Tree Method
	Slide 36: Recursive List Summation

