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ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• Usually, smaller priority value means more important

• deleteMin
• Remove and return the “top priority” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable 
(i.e. you can use “<“ or “compareTo” with it)



Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 𝑛

Binary Heap Θ log 𝑛 Θ log 𝑛

Note: Assume we know the maximum size of the PQ in advance



Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right
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(Min) Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “(Min) Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority
• Max Heap Property: every node’s priority is ≥ its children
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Representing a Heap

• Every complete binary tree with the same 
number of nodes uses the same positions 
and edges

• Use an array to represent the heap

• Index of root: 

• Parent of node 𝑖:

• Left child of node 𝑖:

• Right child of node 𝑖:

• Location of the leaves: 
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Representing a Heap
• Every complete binary tree with the same 

number of nodes uses the same positions 
and edges

• Use an array to represent the heap

• Index of root: 1

• Parent of node 𝑖: 
𝑖

2

• Left child of node 𝑖: 2𝑖

• Right child of node 𝑖: 2𝑖 + 1

• Location of the leaves: last 
𝑛
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Representing a Heap
• Every complete binary tree with the same 

number of nodes uses the same positions 
and edges

• Use an array to represent the heap

• Index of root: 0

• Parent of node 𝑖: 
𝑖+1

2
− 1

• Left child of node 𝑖: 2 𝑖 + 1 − 1

• Right child of node 𝑖: 2(𝑖 + 1)

• Location of the leaves: last 
𝑛
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Insert Psuedocode

insert(item){

if(size == arr.length – 1){resize();}

size++;

arr[i] = item;

percolateUp(i)

} 
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Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}
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Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}
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Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}
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Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}
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Heap Insert

insert(item){

put item in the “next open” spot (keep tree complete)

while (item.priority < parent(item).priority){

swap item with parent

}

}
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Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}
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Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}
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Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}
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Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}
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Heap deleteMin

deleteMin(){

min = root

br = bottom-right item

move br to the root

while(br > either of its children){

swap br with its smallest child

}

return min

}
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Percolate Up and Down (for a Min Heap)

• Goal: restore the “Heap Property”

• Percolate Up:
• Take a node that may be smaller than a parent, repeatedly swap with a parent 

until it is larger than its parent

• Percolate Down:
• Take a node that may be larger than one of its children, repeatedly swap with 

smallest child until both children are larger

• Worst case running time of each:
• Θ log 𝑛



Percolate Up

percolateUp(int i){

int parent = i/2;  \\ index of parent

Item val = arr[i];  \\ value at current location

while(i > 1 && arr[i].priority < arr[parent].priority){  \\ until location is root or heap property holds

arr[i] = arr[parent];  \\ move parent value to this location

arr[parent] = val; \\ put current value into parent’s location 

i = parent;  \\ make current location the parent

parent = i/2;  \\ update new parent

}

}



DeleteMin Psuedocode

deleteMin(){

theMin = arr[1];

arr[1] = arr[size];

size--;

percolateDown(1);

return theMin;

} 



Percolate Down
percolateDown(int i){

int left = i*2;  \\ index of left child

int right = i*2+1;  \\ index of right child

Item val = arr[i];  \\ value at location

while(left <= size){  \\ until location is leaf

int toSwap = right;

if(right > size || arr[left].priority < arr[right] .priority){  \\ if there is no right child or if left child is smaller

toSwap = left;  \\ swap with left

} \\ now toSwap has the smaller of left/right, or left if right does not exist

if (arr[toSwap] .priority < val.priority){  \\ if the smaller child is less than the current value

arr[i] = arr[toSwap];

arr[toSwap] = val; \\ swap parent with smaller child

i = toSwap; \\ update current node to be smaller child

left = i*2;

right = i*2+1;

}

else{ return;} \\ if we don’t swap, then heap property holds

}

}



Other Operations

• Increase Key
• Given the index of an item in the PQ, make its priority value larger

• Min Heap: Then percolate down

• Max Heap: Then percolate up

• Decrease Key
• Given the index of an item in the PQ, make its priority value smaller

• Min Heap: Then percolate up

• Max Heap: Then percolate down

• Remove
• Given the item at the given index from the PQ



Binary Search

search(value, sortedArr){
return helper(value, sortedArr, 0, sortedArr.length);

}
helper(value, arr, low, high){

if (low == high){ return false; }
mid = (high + low) / 2;
if (arr[mid] == value){ return true; }
if (arr[mid] < value){ return helper(value, arr, mid+1, high); }
else { return helper(value, arr, low, mid); }

}



Analysis of Recursive Algorithms
• Overall structure of recursion:

• Do some non-recursive “work”
• Do one or more recursive calls on some portion of your input
• Do some more non-recursive “work”
• Repeat until you reach a base case

• Running time: 𝑇 𝑛 = 𝑇 𝑝1 + 𝑇 𝑝2 + ⋯ + 𝑇 𝑝𝑥 + 𝑓(𝑛)
• The time it takes to run the algorithm on an input of size 𝑛 is:
• The sum of how long it takes to run the same algorithm on each smaller input
• Plus the total amount of non-recursive work done at that step

• Usually: 

• 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛

• Called “divide and conquer” 

• 𝑇 𝑛 = 𝑇 𝑛 − 𝑐 + 𝑓 𝑛
• Called “chip and conquer”



How Efficient Is It?

• 𝑇 𝑛 = 1 + 𝑇
𝑛

2

• Base case: 𝑇 1 = 1

𝑇 𝑛 = “cost” of running the entire 
algorithm on an array of length 𝑛
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Let’s Solve the Recurrence!

𝑇 𝑛 = 1 + 𝑇( ൗ𝑛
2)

𝑇 1 = 1

1 + 𝑇( ൗ𝑛
4)

1 + 𝑇( ൗ𝑛
8)

1

Substitute until  𝑇(1)
So log2 𝑛 steps

𝑇 𝑛 = ෍

𝑖=1

log2𝑛

1 = log2 𝑛 𝑇 𝑛 ∈ Θ log 𝑛
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Recursive Linear Search

search(value, list){
if(list.isEmpty()){

return false;
{
if (value == list[0]){

return true;
}
list.remove(0);
return search(value, list);

}



Unrolling Method

• Repeatedly substitute the recursive part of the recurrence

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐

• 𝑇 𝑛 = 𝑇 𝑛 − 2 + 𝑐 + 𝑐

• 𝑇 𝑛 = 𝑇 𝑛 − 3 + 𝑐 + 𝑐 + 𝑐

• …

• 𝑇 𝑛 = 𝑐 + 𝑐 + 𝑐 + ⋯ + 𝑐
• How many 𝑐’s?



Recursive List Summation

sum(list){

return sum_helper(list, 0, list.size);

}

sum_helper(list, low, high){

if (low == high){ return 0; }

if (low == high-1){ return list[low]; }

middle = (high+low)/2;

return sum_helper(list, low, middle) + sum_helper(list, middle, high);

}



Loop Unrolling Method

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐



Loop Unrolling Method

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐

• 𝑇 𝑛 = 2 2𝑇
𝑛

4
+ 𝑐 + 𝑐 = 4𝑇

𝑛

4
+ 3𝑐

• 𝑇 𝑛 = 4 2𝑇
𝑛

8
+ 𝑐 + 3𝑐 = 8𝑇

𝑛

8
+ 7𝑐

• …after 𝑖 − 1 substitutions

• 𝑇 𝑛 = 2𝑖𝑇
𝑛

2𝑖 + 2𝑖 − 1 𝑐

• 𝑇
𝑛

2𝑖 = 𝑇(1) when 𝑖 = log2 𝑛

• 𝑇 𝑛 = 2log2 𝑛𝑇 1 + 2log2 𝑛 − 1 𝑐 = 𝑛 ⋅ 𝑐0 + 𝑐𝑛 − 𝑐 = Θ(𝑛)



Tree Method

 2𝑖 ⋅ 𝑐 work per level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑐

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑐

𝑐 𝑐

𝑐 𝑐 𝑐 𝑐

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion



Recursive List Summation

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

2𝑖 ⋅ 𝑐

= 𝑐 ⋅ ෍

𝑖=1

log2 𝑛

2𝑖

= 𝑐
1 − 2log2 𝑛

1 − 2
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