CSE 332 Winter 2024 Lecture 6: Priority Queues and recurrences
 Nathan Brunelle
 http://www.cs.uw.edu/332

ADT: Priority Queue

- What is it?
- A collection of items and their "priorities"
- Allows quick access/removal to the "top priority" thing
- What Operations do we need?
- insert(item, priority)
- Add a new item to the PQ with indicated priority
- Usually, smaller priority value means more important
- deleteMin
- Remove and return the "top priority" item from the queue
- Is_empty
- Indicate whether or not there are items still on the queue
- Note: the "priority" value can be any type/class so long as it's comparable (i.e. you can use "<" or "compareTo" with it)

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to deleteMin
Unsorted Array	$\Theta(1)$	$\Theta(n)$
Unsorted Linked List		$\Theta(n)$
Sorted Array	$\Theta(n)$	$\bigcirc(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(1)$
Binary Search Tree	$0(n)$	$\Theta(n)$
Binary Heap	$\Theta(\log n)$	$\Theta(\log n)$
-		

Note: Assume we know the maximum size of the PQ in advance

Trees for Heaps

- Binary Trees:
- The branching factor is 2
- Every node has ≤ 2 children
- Complete Tree:
- All "layers" are full, except the bottom
- Bottom layer filled left-to-right

Tree T
(Min) Heap Data Structure

- Keep items in a complete binary tree
- Maintain the "(Min) Heap Property" of the tree
- Every node's priority is \leq its children's priority
- Max Heap Property: every node's priority is \geq its children

Representing a Heap

	1	3	2	4	7	5	6	5	9
0	1	2	3	4	5	6	7	8	

me

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap
- Index of root:
- Parent of node i :

- Left child of node i :
- Right child of node i :
- Location of the leaves:

- Every complete binary tree with the same number of nodes uses the same positions and edges
- Use an array to represent the heap
- Index of root: 1
- Parent of node $i:\left\lfloor\frac{i}{2}\right\rfloor$
- Left child of node i : $2 i$
- Right child of node $i: 2 i+1$
- Location of the leaves: last $\left.\left\lvert\, \frac{n}{2}\right.\right\rceil$

Representing a Heap

1	3	2	4	7	5	6	5	9

- Every complete binary tree with the same number of nodes uses the same positions and edges

- Use an array to represent the heap
- Index of root: 0
- Parent of node i :

- Left child of node i : $2(i+1)-1$
- Right child of node $i: 2(i+1)$
- Location of the leaves: last $\left\lceil\frac{n}{2}\right\rceil$

Insert Psuedocode

	1	3	2	4	7	5	6	5	9	
0	1	2	3	4	5	7	8	9	10	

if(size == arr.length -1)\{resize();\}
size++;
arr[i] $=$ item;
percolateUp(i)
\}

Heap Insert ${ }^{15}$

insert(item)\{

put item in the "next open" spot (keep tree complete) while (item.priority < parent(item).priority)\{
swap item with parent
\}

Heap Insert

insert(item)\{
put item in the "next open" spot (keep tree complete)while (item.priority < parent(item).priority)\{
swap item with parent

 \}

Heap Insert

insert(item)\{

put item in the "next open" spot (keep tree complete)
while (item.priority < parent(item).priority)\{
swap item with parent

- Percolate Up

Heap Insert

insert(item)\{
put item in the "next open" spot (keep tree complete)
while (item.priority < parent(item).priority)\{
swap item with parent
\}

Heap Insert

insert(item) $\{$
put item in the "next open" spot (keep tree complete)
while (item.priority < parent(item).priority)\{
swap item with parent
\}
\}

Heap deleteMin

deleteMin()\{
$\min =$ root
br = bottom-right item
move br to the root
while(br > either of its children)\{
swap br with its smallest child
\}
return min

Heap deleteMin

deleteMin()\{

$$
\min =\text { root }
$$

br = bottom-right item
move br to the root
while(br > either of its children)\{
swap br with its smallest child
\}
return min

Heap deleteMin

deleteMin()\{

$\min =$ root
br = bottom-right item move br to the root while(br > either of its children)\{ swap br with its smallest child \}
return min

Heap deleteMin

deleteMin()\{

$\min =$ root
br = bottom-right item move br to the root while(br > either of its children)\{ swap br with its smallest child \}
return min

Heap deleteMin

deleteMin()\{
$\min =$ root
br = bottom-right item
move br to the root
while(br > either of its children)\{
swap br with its smallest child
\}
return min

Percolate Up and Down (for a Min Heap)

- Goal: restore the "Heap Property"
- Percolate Up:
- Take a node that may be smaller than a parent, repeatedly swap with a parent until it is larger than its parent
- Percolate Down:
- Take a node that may be larger than one of its children, repeatedly swap with smallest child until both children are larger
- Worst case running time of each:
- $\Theta(\log n)$

Percolate Up

```
percolateUp(int i){
    int parent = i/2; \\ index of parent
    Item val = arr[i]; \\ value at current location
    while(i > 1 && arr[i].priority < arr[parent].priority){ \\ until location is root or heap property holds
        arr[i] = arr[parent]; \\ move parent value to this location
        arr[parent] = val; \\ put current value into parent's location
        i = parent; \\ make current location the parent
        parent = i/2; \\ update new parent
    }
}
```


DeleteMin Psuedocode

deleteMin()\{
theMin $=\operatorname{arr}[1] ;$
$\operatorname{arr}[1]=\operatorname{arr}[s i z e] ;$
size--;
percolateDown(1);
return theMin;
\}

Percolate Down

percolateDown(int i)\{

int left = i*2;
 index of left child
int right $=i^{*} 2+1 ; \backslash \backslash$ index of right child
Item val = arr[i];
value at location
while(left <= size) $\{\backslash$ until location is leaf
int toSwap = right;
if(right > size || arr[left].priority < arr[right] .priority)\{
 if there is no right child or if left child is smaller
toSwap = left;
swap with left
\}
now toSwap has the smaller of left/right, or left if right does not exist
if (arr[toSwap] .priority < val.priority)\{
 if the smaller child is less than the current value
$\operatorname{arr}[\mathrm{i}]=\operatorname{arr}[t o S w a p] ;$
arr[toSwap] = val;
swap parent with smaller child
i = toSwap;
update current node to be smaller child
left = i*2;
right $=i^{*} 2+1 ;$
\}
else\{ return;\}
 if we don't swap, then heap property holds
\}

Other Operations

- Increase Key

. Given the index of an item in the PQ, make its priority value larger

- Min Heap: Then percolate down
- Max Heap: Then percolate up
- Decrease Key
- Given the index of an item in the $P Q$, make its priority value smaller
- Min Heap: Then percolate up
- Max Heap: Then percolate down
- Remove
- Given the item at the given index from the PQ

Analysis of Recursive Algorithms

- Overall structure of recursion:
- Do some non-recursive "work" $<$
- Do one or more recursive calls on some portion of your input \subset
- Do some more non-recursive "work"
- Repeat until you reach a base case,
- Running time: $T(n)=T\left(p_{11}\right) \pm T\left(p_{2}\right)+\cdots+T\left(p_{x}\right)+f(n)$
- The time it takes to runthe algorithmon an input of size n is:
- The sum of how long it takes to run the same algorithm on each smaller input
- Plus the total amount of non-recursive work done at that step
- Usually:
- $T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)$
- Called "divide and conquer"
- $T(n)=T(n-c)+f(n)$
- Called "chip and conquer"

How Efficient Is It?

- $T(n)=1+T\left(\left\lceil\left.\frac{n}{2} \right\rvert\,\right)\right.$
- Base case: $T(1)=1$
$T(n)=$ "cost" of running the entire algorithm on an array of length n

Let's Solve the Recurrence! $T\left(\frac{b}{2}\right)=1 \nprec T\left(\frac{4}{4}\right)$ $\rightarrow \begin{aligned} & T(1)=1 \\ & T(n)=1+\mathrm{Tm})_{2}\end{aligned}$
$1+7 \mathrm{~m}$

$$
T(n)=\sum_{i=1}^{\log _{2} n} 1=\log _{2} n
$$

Substitute until $T(1)$
So $\log _{2} n$ steps

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+n \\
& =T\left(\frac{n}{4}\right)+\frac{n}{2}+n \\
& =\pi\left(\frac{n}{8}\right)+\frac{n}{4}+\frac{n}{2} \times n \\
T\left(\frac{n}{n}\right) & =T\left(\frac{n}{4}\right)+\frac{n}{2} \theta(n)
\end{aligned}
$$

Unrolling Method $T(n-1)=Y(n-\alpha) x$

- Repeatedly substitute the recursive part of the recurrence
- $T(n)=T(n-1)+c$
- $T(n)=T(n-2)+c+c$
- $T(n)=T(n-3)+c+c+c$
- ...
- $T(n)=c c+c+c+\cdots+c$
- How many c 's?
$T(n)=c+2 T\left(\frac{n}{a}\right)$ Recursive, List Summation
sum(list) $\{$
return sum_helper(list, 0, list.size);

sum_helper(list, low, high)\{
if (low == high) \{ return 0 ; \}
if (low == high -1) \{ return list[low]; \} ~
middle $=($ high + low $) / 2$;
return sum_helper(list, low, middle) + sum_helper(list, middle, high);

$$
T\left(\frac{n}{2}\right) \quad T\left(\frac{\llcorner }{2}\right)
$$

Loop Unrolling Method $T\left(\frac{n}{2}\right)=2 \Gamma\left(\frac{n}{4}\right)+C$

$$
\cdot T(n)=2 T\left(\frac{n}{2}\right)+c=2(\underbrace{2 \quad F\left(\frac{n}{4}\right) \times c})+C
$$

Loop Unrolling Method

- $T(n)=2 T\left(\frac{n}{2}\right)+c$
- $T(n)=2\left(2 T\left(\frac{n}{4}\right)+c\right)+c=4 T\left(\frac{n}{4}\right)+3 c$
- $T(n)=4\left(2 T\left(\frac{n}{8}\right)+c\right)+3 c=8 T\left(\frac{n}{8}\right)+7 c$
- ...after $i-1$ substitutions ${ }_{2}{ }^{i}$
- $T(n)=\widehat{2 i} T\left(\frac{n}{2 i}\right)+\left(2^{i}-1\right) c$
$2^{i} \quad 2^{i}-1$
- $T\left(\frac{n}{2 i}\right)=T(1)$ when $i=\log _{2} n$
- $T(n)=\underbrace{2^{\log _{2} n} T(1)+\left(2^{\log _{2} n}-1\right) c=n \cdot c_{0}+c n-c=\Theta(n)}$

Tree Method

Recursive List Summation

$$
\begin{gathered}
T(n)=\sum_{i=1}^{\log _{2} n} 2^{i} \cdot c \\
=c \cdot \sum_{i=1}^{\log _{2} n} 2^{i} \\
=c\left(\frac{1-2^{\log _{2} n}}{1-2}\right)
\end{gathered}
$$

