
CSE 332 Winter 2024
Lecture 9: AVL Trees and B-Trees

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332


Dictionary (Map) ADT

• Contents:
• Sets of key+value pairs
• Keys must be comparable

• Operations:
• insert(key, value)

• Adds the (key,value) pair into the dictionary
• If the key already has a value, overwrite the old value

• Consequence: Keys cannot be repeated

• find(key)
• Returns the value associated with the given key

• delete(key)
• Remove the key (and its associated value)



Dictionary Data Structures

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)



AVL Tree

• A Binary Search tree that maintains that the left and right subtrees of 
every node have heights that differ by at most one.
• height of left subtree and height of right subtree off by at most 1

• Not too weak (ensures trees are short)

• Not too strong (works for any number of nodes)

• Idea of AVL Tree:
• When you insert/delete nodes, if tree is “out of balance” then modify the tree

• Modification = “rotation”



Not Balanced!

-1

Height = 3 Height = 1

Solution: rotate the whole tree to the right

9

3 10

1 16

0

6

2 7



Balanced!

-1

3

91

10
0

6
2

7 16



Right Rotation

• Make the left child the new root

• Make the old root the right child of the new

• Make the new root’s right subtree the old root’s left subtree

𝑎
𝑥

𝑏

𝑦 𝑧𝑐

Right 
Rotation

𝑎

𝑥

𝑏

𝑦

𝑧

𝑐

ℎ + 1 ℎ

ℎ + 2

ℎ + 3

ℎ ℎ + 1
ℎ + 1

ℎ + 2

ℎ ℎ



Insert Example 20

9

3 11

1 16

0

6

2 18

10



Not Balanced!

Solution: rotate the deepest 
unbalanced root to the left

20

9

3 11

1 16

0

6

2 18

10



Balanced!

9

3 11

1 18

0

6

2 20

10

16



Left Rotation

• Make the right child the new root

• Make the old root the left child of the new

• Make the new root’s left subtree the old root’s right subtree

𝑏
𝑥

𝑎

𝑦 𝑧

𝑐

Left 
Rotation

𝑏

𝑥

𝑎

𝑦

𝑧

𝑐

ℎ ℎ

ℎ + 1

ℎ + 2

ℎ + 1ℎ + 1 ℎ + 2

ℎ + 3

ℎ ℎ + 1



Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for unbalance

• If unbalanced then at the deepest unbalanced root:
• If the left subtree was deeper then rotate right

• If the right subtree was deeper then rotate left

This is incomplete!
There are some cases 
where this doesn’t work!

9

5

7

9

5 Insert 7
Right 

Rotation

5

9

7



Insertion Story So Far

• After insertion, update the heights of the node’s ancestors

• Check for unbalance

• If unbalanced then at the deepest unbalanced root:
• Case LL: If we inserted in the left subtree of the left child then rotate right

• Case RR: If we inserted in the right subtree of the right child then rotate left

• Case LR: If we inserted into the right subtree of the left child then ???

• Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2 
rotations!



Case LR 

• From deepest unbalanced root:
• Rotate left at the left child

• Rotate right at the root

9

5

7

9

5
Insert 7

9

7

5

Rotate Left 
at 5 Rotate 

Right at 9

7

5 9



Case LR in General

• Imbalance caused by inserting in the left child’s right subtree

• Rotate left at the left child

• Rotate right at the unbalanced node

Rotate 
Left at 𝑏

𝑎

𝑤

𝑏

𝑥

𝑧
ℎ ℎ + 1

ℎ + 2

ℎ + 3

ℎ

𝑐

𝑦

𝑑 𝑑

𝑎

𝑤

𝑐

𝑧

ℎ

ℎ + 2

ℎ + 3

ℎ

𝑥

𝑑

𝑦

𝑑

𝑏
ℎ + 1

𝑤

ℎ

𝑥

𝑑

𝑏

𝑐

𝑎

𝑦

𝑑 𝑧

ℎ + 1

ℎ + 2

ℎ + 1

ℎ

Rotate 
Right at 𝑎



Case RL in General

• Imbalance caused by inserting in the right child’s left subtree

• Rotate right at the right child

• Rotate left at the unbalanced node

Rotate 
Right at 𝑏

𝑎

𝑤

𝑏

𝑥 𝑧

ℎ

ℎ + 1

ℎ + 2

ℎ + 3

ℎ𝑐

𝑦

𝑑 𝑑

𝑤

ℎ

𝑥

𝑑

𝑎

𝑐

𝑏

𝑦

𝑑 𝑧

ℎ + 1

ℎ + 2

ℎ + 1

ℎ

Rotate 
Left at 𝑎

𝑎

𝑤

𝑐

𝑧

ℎ ℎ + 2

ℎ + 3

ℎ
𝑥

𝑑 𝑦

𝑑

𝑏ℎ + 1



Insert Summary

• After a BST insertion, update the heights of the node’s ancestors

• From leaf to root, check if each node is unbalanced

• If a node is unbalanced then at the deepest unbalanced node:
• Case LL: If we inserted in the left subtree of the left child then: rotate right

• Case RR: If we inserted in the right subtree of the right child then: rotate left

• Case LR: If we inserted into the right subtree of the left child then: rotate left at 
the left child and then rotate right at the root

• Case RL: If we inserted into the left subtree of the right child then: rotate right at 
the right child and then rotate left at the root

• Done after either reaching the root or applying one of the above cases



Delete Summary

• Tldr: same cases, reverse direction of rotation, may need to repeat with 
ancestors

• After a BST deletion, update the heights of the node’s ancestors
• From leaf to root, check if each node is unbalanced
• If a node is unbalanced then at the deepest unbalanced node:

• Case LL: If we deleted in the left subtree of the left child then: rotate left
• Case RR: If we deleted in the right subtree of the right child then: rotate right
• Case LR: If we deleted into the right subtree of the left child then: rotate right at the 

left child and then rotate left at the root
• Case RL: If we deleted into the left subtree of the right child then: rotate left at the 

right child and then rotate right at the root

• Continue checking until reach the root



Memory Hierarchy

CPU

L1 Cache

L2 Cache

Main Memory

Disk

Size: 1 KB
Speed: Free

Size: 128 KB
Speed: 2 cycles per lookup

Size: 2 MB
Speed: 30 cycles per lookup

Size: 2 GB
Speed: 250 cycles per lookup

Size: 1 TB
Speed: 8,000,000 cycles per lookup

Large memory is slow to access.
We use different “layers” or memory 
to balance quantity of storage with 
speed of access.
Ideally the data we want is in small 
memory, but we may need to go deep



B Trees Motivation

• Memory Locality
• Observation: in practice, when you read from memory you’re likely to soon 

thereafter read from nearby memory

• When memory is “fetched”, it’s collected in blocks at a time

• Works well for arrays (they’re contiguous is memory)

• May not be helpful for linked lists, BSTs, etc. (pointers could go wherever)

• Solution: Have a BST-like data structure which can take advantage of 
locality



First Idea

• BST nodes have a lot of information inside them 

• We don’t need that information for “intermediate” nodes

• Solution: Delay loading anything except keys as long as possible

9

3 10

1
16

0

6

5 7

Key = 9
Value = “hello”
Left = Node 3

Right = Node 10



Second Idea

• Nodes may not be close to each other in memory

• In the worst case, each step in a traversal could go deep in memory

• Solution: Increase branching factor of tree load blocks of keys at a time
• M-ary tree: each node has at most M children

• Choose M to snugly fit in a block



B Trees (aka B+ Trees)

• Two types of nodes:
• Internal Nodes

• Sorted array of 𝑀 − 1 keys

• Has 𝑀 children

• No other data!

• Leaf Nodes
• Sorted array of 𝐿 key-value pairs

• Subtree between values 𝑎 and 𝑏 must contain only keys that are ≥ 𝑎
and < 𝑏
• If 𝑎 is missing use −∞

• If 𝑏 is missing use ∞

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

𝑎 𝑏

𝑎 ≤ 𝑘 < 𝑏



Find

• Start at the root node

• Binary search to identify correct subtree

• Repeat until you reach a leaf node

• Binary search the leaf to get the value

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



B Tree Structure Requirements

• Root:
• If the tree has ≤ 𝐿 items then root is a leaf node

• Otherwise it is an internal node

• Internal Nodes:

• Must have at least 
𝑀

2
children (at least have full)

• Leaf Nodes:

• Must have at least Must have at least 
𝐿

2
items (at least have full)

• All leaves are at the same depth



Insertion Summary

• Binary search to find which leaf should contain the new item

• If there’s room, add it to the leaf array (maintaining sorted order)

• If there’s not room, split
• Make a new leaf node, move the larger half of the items to it

• If there’s room in the parent internal node, add new leaf to it (with new key 
bound value)

• If there’s not room in the parent internal node, split that!
• Make a new internal node and have it point to the half the leaves (with correct key 

bound values)

• If there’s room in the parent internal node, add this internal node to it

• If there’s not room, repeat this process until there is!



Insertion TLDR

• Find where the item goes by repeated binary search

• If there’s room, just add it

• If there’s not room, split things until there is



Insert Example

Insert 22

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 22

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

22

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 26

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 26

3 5 9

1

2

3

4

20 25 27 55

5

6

7

9

10

13

14

17

20

24

25

26

38

40

50

55

90

13 38

27

30



Insert Example

Insert 8

3 5 9

1

2

3

4

20 25 55

5

6

7

9

10

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38



Insert Example

Insert 8

3 5 9

1

2

3

4

5

6

9

10

5

6

7

5

6

8

7

8
Split!

7

8

Split!
9

7

8

9

10

3 5

1

2

3

4

5

6



Insert Example

Insert 8

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

13 38

9

7

8

9

10

3 5

1

2

3

4

5

6



Insert Example

Insert 8

20 25 55

13

14

17

20

24

25

27

30

38

40

50

55

90

7 13 38

9

7

8

9

10

3 5

1

2

3

4

5

6


	Slide 1: CSE 332 Winter 2024 Lecture 9: AVL Trees and B-Trees
	Slide 2: Dictionary (Map) ADT
	Slide 3: Dictionary Data Structures
	Slide 4: AVL Tree
	Slide 5: Not Balanced!
	Slide 6: Balanced!
	Slide 7: Right Rotation
	Slide 8: Insert Example
	Slide 9: Not Balanced!
	Slide 10: Balanced!
	Slide 11: Left Rotation
	Slide 12: Insertion Story So Far
	Slide 13: Insertion Story So Far
	Slide 14: Case LR 
	Slide 15: Case LR in General
	Slide 16: Case RL in General
	Slide 17: Insert Summary
	Slide 18: Delete Summary
	Slide 19: Memory Hierarchy
	Slide 20: B Trees Motivation
	Slide 21: First Idea
	Slide 22: Second Idea
	Slide 23: B Trees (aka B+ Trees)
	Slide 24: Find
	Slide 25: B Tree Structure Requirements
	Slide 26: Insertion Summary
	Slide 27: Insertion TLDR
	Slide 28: Insert Example
	Slide 29: Insert Example
	Slide 30: Insert Example
	Slide 31: Insert Example
	Slide 32: Insert Example
	Slide 33: Insert Example
	Slide 34: Insert Example
	Slide 35: Insert Example

