Useful Math Identities

Summations

1.
$$\sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x}$$
 for $|x| < 1$
2. $\sum_{i=0}^{n-1} 1 = \sum_{i=1}^{n} 1 = n$
3. $\sum_{i=0}^{n} i = 0 + \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
4. $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6}$
5. $\sum_{i=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2} = \frac{n^{4}}{4} + \frac{n^{3}}{2} + \frac{n^{2}}{4}$
6. $\sum_{i=0}^{n-1} x^{i} = \frac{1-x^{n}}{1-x}$
7. $\sum_{i=0}^{n-1} \frac{1}{2^{i}} = 2 - \frac{1}{2^{n-1}}$

If there is an uncommon summation, we recommend using Wolfram Alpha to simplify it.

Logs

A few useful formulas, more can be found on the bottom of these slides

1.
$$x^{\log_x n} = n$$

2. $a^{\log_b c} = c^{\log_b a}$
3. $\log_b a = \frac{\log_a a}{\log_b b}$