CSE 333

Lecture 20 - intro to concurrency

Steve Gribble
Department of Computer Science & Engineering
University of Washington

)
4

CSE333 lec 20 concurrenc y // 11-30-12 // gribble




(Goals

Understand concurrency

- why it is useful

- why it is hard

Exposure to concurrent programming styles
- using multiple threads or multiple processes

- using asynchronous or non-blocking 1/0O

»  “event-driven programming”

CSES333 lec 20 concurrency // 11-30-12 // gribble




Let’s Imagine you want to...

...build a web search engine.

- you need a Web index

» an inverted index (a map from “word” to “list of documents

containing the word”)
» probably sharded over multiple files
- a query processor
» accepts a query composed of multiple words

» |ooks up each word in the index

» merges the result from each word into an overall result set

CSES333 lec 20 concurrency // 11-30-12 // gribble




Architecturally

iNndex
file

index
file

query
processor

iNndex
file

.
.| client
'é
4
4
L4
4
4
4
K4
&' H
L .3 client
&' v"
o’ s”
4 ,4
* -
'4
4"
--------------- client
§~~~~
. S
« ~
LS o
Y ~
IS S
. ~, '
" client
‘s
<~
~
~
«~
<~
«~
~
5. .
client

CSES333 lec 20 concurrency // 11-30-12 // gribble




A sequential iImplementation

p
doclist Lookup(string word) {
bucket = hash (word) ;
hitlist = file.read (bucket) ;
foreach hit in hitlist {
doclist.append(file.read(hit)) ;
}

return doclist;

}

main () {
while (1) {

string query words[] = GetNextQuery() ;
results = Lookup (query words[0]) ;
foreach word in query[l..n] {

}
Display (results) ;

results = results.intersect (Lookup (word)) ;

2 // gribble




Visually

()AxonpdaxoN31®D

0/I >Iomiau

()Ae1dstda
()s3Tnsay 3o09saa3jul

O/I ¥STP

()peox-oT1TT
()dn3ooT

O/I ¥STP

()pea2x-oTTT
()dn3joorT

O/I ¥STP

()peax-oTTT
()dnxooT

O/I Iomiau

()AxenpaxsN31IoD
()uteu

time

query

CSES333 lec 20 concurrency // 11-30-12 // gribble




Simplifying

°9°¢ NdO
P'€ 0O/I
™
>t nad | §
-
O
q‘€ 0/1
e*¢g Ndo
°2°¢ NdO
Pz O/I
A
>z nad| S
-
O
q'z o/1
e*¢Z NdoO
5" T nao
P'T O/I
O°T NdO
q'1 0o/I
e*T NdO

query 1

time

CSES333 lec 20 concurrency // 11-30-12 // gribble




Simplifying

only one 1/O request cu Q 0 o 0
at a time is in flight ™ ™ ™ ™ e
the CPU is idle \ a2 |B 2 |B
most of the time
S Q 4 T ) query 3
(Q\ AN (Q\] (Q\ AN
-] @) -] O -
ak ~ ak ~ [aF
@) H @) H @)
S Q O (o 0 query 2
— — — — — \
D O D O D . , _
] I ] 3 queries don’t run until
earlier queries finish
query 1
time

CSES333 lec 20 concurrency // 11-30-12 // gribble




Sequentiality can be inefficient

Only one query is being processed at a time
- all other queries queue up behind the first one
The CPU is idle most of the time

- it is “blocked” waiting for |/O to complete

» disk I/O can be very, very slow
At most one |/O operation is in flight at a time

- misses opportunities to speed I/O up

» separate devices in parallel, better scheduling of single device, ...

CSE333 lec 20 concurrenc y // 11-30-12 // gribble




What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

- It could execute multiple queries at the same time
» while one is waiting for I/O, another can be executing on the CPU

- Of, it could execute queries one at a time, but issue
10 requests against different files/disks simultaneously

» it could read from several different index files at once, processing
the I/O results as they arrive

Concurrency = parallelism

- parallelism is when multiple CPUs work simultaneously

CSES333 lec 20 concurrency // 11-30-12 // gribble




One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread, or process, to handle it

» the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

» the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on 1/O

- the OS context switches between threads / processes
» while one is blocked on I/O, another can use the CPU

» multiple threads’ I/O requests can be issued at once

CSES333 lec 20 concurrency // 11-30-12 // gribble




Multithreaded pseudocode

main () {
while (1) {
string query words[] = GetNextQuery()
ForkThread (ProcessQuery()) ;

}
}

- J

doclist Lookup(string word) {
bucket = hash (word) ;
hitlist = file.read (bucket) ;
foreach hit in hitlist
doclist.append(file.read(hit)) ;
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]) ;
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;

}
Display (results) ;

}

- Acy // 11-30-12 // gribble




ly

visua

Multithreaded

°°¢ NdO

pP°€ 0O/I

°°¢ NdO

0°¢ NdO

q*¢€ 0/I

P°Z O/I

°°T NdOD

Q¢ NdO

e*¢g NdoO

query 3

q°c 0/I

P°T O/I

O°T NdD

e*Z NdoO

query 2

q°T O/I

e*T Ndo

query 1

time

CSES333 lec 20 concurrency // 11-30-12 // gribble




Whither threads?

Advantages
- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- If your threads share data, need locks or other synchronization
» this is very bug-prone and difficult to debug

- threads can introduce overhead
» lock contention, context switch overhead, and other issues

- need language support for threads

CSES333 lec 20 concurrency // 11-30-12 // gribble




One alternative

Fork processes instead of threads

- advantages:

» NO shared memory between processes, SO NO need to worry about
concurrent accesses to shared variables / data structures

» no need for language support; OS provides “fork”
- disadvantages:
» more overhead than threads to create, context switch

» cannot easily share memory between processes, so typically share
through the file system

CSES333 lec 20 concurrency // 11-30-12 // gribble




Another alternative

Use asynchronous or non-blocking |/0O
- your program begins processing a query

» when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

» the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

» when data becomes available, the OS lets your program know

- your program (almost never) blocks on /O

CSES333 lec 20 concurrency // 11-30-12 // gribble




Event-driven programming

Your program is structured as an event-loop

-

void dispatch(task, event) {
switch (task.state) {

case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]) ;
task.state = READING FROM INDEX;
return;

case READING FROM INDEX:
...etc.

}
}

while (1) {
event = 0S.GetNextEvent( ) ;
task = lookup (event) ;
dispatch(task, event);

}

\_

/
CSE333Tec 20 concurrency /7 11-30-12 // gribble




Asynchronous, event-driven

pP°€ 0O/I

q*€ O/I

time

a°¢ Ndd
5°¢ ndd
oz Ndd
21 Ndd
Pz 0/
P'T O/I | [e-¢ nao
5z ndd
51 ndd
a-z o/
q-1 0/I
ez ndd
1 ndd

CSES333 lec 20 concurrency // 11-30-12 // gribble




Non-blocking vs. asynchronous

Non-blocking 1/0O (network, console)
- your program enables non-blocking I/0O on its fd’s
- your program issues read( ), write( ) system calls
» if the read/write would block, the system call returns immediately

- program can ask the OS which fd’s are readable/writeable

» program can choose to block while no fds are ready
Asynchronous 1/O (disk)
- program tells the OS to begin reading / writing

» the “begin_read” or “begin_write” returns immediately

» when the I/O completes, OS delivers an event to the program

CSES333 lec 20 concurrency // 11-30-12 // gribble




Why the difference”

Non-blocking 1/O is for networks
- according to Linux, the disk never blocks your program
» It just delays it
- but, reading from the network can truly block your program
» aremote computer may wait arbitrarily long before sending data
Asynchronous /O is for files

- primarily used to hide disk latency
» asynchronous |/O system calls are messy and complicated :(

» instead, typically use a threadpool to emulate asynchronous /O

CSES333 lec 20 concurrency // 11-30-12 // gribble




Whither events?

Advantages
- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

» one event handler for each Ul event
Disadvantages

- can lead to very complex structure for programs that do lots of
disk and network 1/O

» sequential code gets broken up into a jumble of small event handlers

» you have to package up all task state between handlers

CSES333 lec 20 concurrency // 11-30-12 // gribble




One way to think about it

Threaded code:

- each thread executes its task sequentially, and per-task state
IS naturally stored in the thread’s stack

- OS and thread scheduler switch between threads for you
Event-driven code:
- *you* are the scheduler

- you have to bundle up task state into continuations; tasks do
not have their own stacks

CSE333 lec 20 concurrenc y // 11-30-12 // gribble




See you on Monday!

CSES333 lec 20 concurrency // 11-30-12 // gribble




