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(Goals

Understand concurrency

- why it is useful

- why it is hard

Exposure to concurrent programming styles
- using multiple threads or multiple processes

- using asynchronous or non-blocking 1/0O

»  “event-driven programming”
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Let’s Imagine you want to...

...build a web search engine.

- you need a Web index

» an inverted index (a map from “word” to “list of documents

containing the word”)
» probably sharded over multiple files
- a query processor
» accepts a query composed of multiple words

» |ooks up each word in the index

» merges the result from each word into an overall result set
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Architecturally
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A sequential iImplementation

p
doclist Lookup(string word) {
bucket = hash (word) ;
hitlist = file.read (bucket) ;
foreach hit in hitlist {
doclist.append(file.read(hit)) ;
}

return doclist;

}

main () {
while (1) {

string query words[] = GetNextQuery() ;
results = Lookup (query words[0]) ;
foreach word in query[l..n] {

}
Display (results) ;

results = results.intersect (Lookup (word)) ;
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Visually
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Simplifying
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Simplifying
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Sequentiality can be inefficient

Only one query is being processed at a time
- all other queries queue up behind the first one
The CPU is idle most of the time

- it is “blocked” waiting for |/O to complete

» disk I/O can be very, very slow
At most one |/O operation is in flight at a time

- misses opportunities to speed I/O up

» separate devices in parallel, better scheduling of single device, ...
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What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

- It could execute multiple queries at the same time
» while one is waiting for I/O, another can be executing on the CPU

- Of, it could execute queries one at a time, but issue
10 requests against different files/disks simultaneously

» it could read from several different index files at once, processing
the I/O results as they arrive

Concurrency = parallelism

- parallelism is when multiple CPUs work simultaneously
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One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread, or process, to handle it

» the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

» the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on 1/O

- the OS context switches between threads / processes
» while one is blocked on I/O, another can use the CPU

» multiple threads’ I/O requests can be issued at once
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Multithreaded pseudocode

main () {
while (1) {
string query words[] = GetNextQuery()
ForkThread (ProcessQuery()) ;

}
}

- J

doclist Lookup(string word) {
bucket = hash (word) ;
hitlist = file.read (bucket) ;
foreach hit in hitlist
doclist.append(file.read(hit)) ;
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]) ;
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;

}
Display (results) ;

}
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Whither threads?

Advantages
- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- If your threads share data, need locks or other synchronization
» this is very bug-prone and difficult to debug

- threads can introduce overhead
» lock contention, context switch overhead, and other issues

- need language support for threads
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One alternative

Fork processes instead of threads

- advantages:

» NO shared memory between processes, SO NO need to worry about
concurrent accesses to shared variables / data structures

» no need for language support; OS provides “fork”
- disadvantages:
» more overhead than threads to create, context switch

» cannot easily share memory between processes, so typically share
through the file system
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Another alternative

Use asynchronous or non-blocking |/0O
- your program begins processing a query

» when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

» the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

» when data becomes available, the OS lets your program know

- your program (almost never) blocks on /O
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Event-driven programming

Your program is structured as an event-loop

-

void dispatch(task, event) {
switch (task.state) {

case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]) ;
task.state = READING FROM INDEX;
return;

case READING FROM INDEX:
...etc.

}
}

while (1) {
event = 0S.GetNextEvent( ) ;
task = lookup (event) ;
dispatch(task, event);

}

\_

/
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Asynchronous, event-driven
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Non-blocking vs. asynchronous

Non-blocking 1/0O (network, console)
- your program enables non-blocking I/0O on its fd’s
- your program issues read( ), write( ) system calls
» if the read/write would block, the system call returns immediately

- program can ask the OS which fd’s are readable/writeable

» program can choose to block while no fds are ready
Asynchronous 1/O (disk)
- program tells the OS to begin reading / writing

» the “begin_read” or “begin_write” returns immediately

» when the I/O completes, OS delivers an event to the program
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Why the difference”

Non-blocking 1/O is for networks
- according to Linux, the disk never blocks your program
» It just delays it
- but, reading from the network can truly block your program
» aremote computer may wait arbitrarily long before sending data
Asynchronous /O is for files

- primarily used to hide disk latency
» asynchronous |/O system calls are messy and complicated :(

» instead, typically use a threadpool to emulate asynchronous /O
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Whither events?

Advantages
- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

» one event handler for each Ul event
Disadvantages

- can lead to very complex structure for programs that do lots of
disk and network 1/O

» sequential code gets broken up into a jumble of small event handlers

» you have to package up all task state between handlers
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One way to think about it

Threaded code:

- each thread executes its task sequentially, and per-task state
IS naturally stored in the thread’s stack

- OS and thread scheduler switch between threads for you
Event-driven code:
- *you* are the scheduler

- you have to bundle up task state into continuations; tasks do
not have their own stacks
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See you on Monday!
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