CSE 333 - SECTION 5

C++ Review

Overview

- Classes, Constructors, etc.
- Introduction to operator overloading
- Example program - An Integer Array class
- Section exercise

C++ classes

- Encapsulation and Abstraction
- Access specifiers:
- Public: anything outside the class can access it
- Protected: only this class and derived classes can access it
- Private: only this class can access it
- Polymorphism
- Multiple Inheritence

Constructors

- Function called when an object of a class is created
- Initializes the data members of a class
- Has the same name as the class
- Types -
- Default - also called the empty constructor
- Parameterized - Has arguments.
- Copy - Pass another already constructed object of the same class.

Operator Overloading

- A form of polymorphism.
- Give special meanings to operators in user-defined classes.
- Special member functions in classes with a particular naming convention.
- For E.g., for overloading the ‘+' operator, define a member function named operator+.

Common operators

- The most commonly overloaded operators are
- = (assignment operator)
- + - * (binary arithmetic operators)
- += -= *= (compound assignment operators)
- == != (comparison operators)

Demo

IntArray class

Section Exercise

- Define a class Vector that represents a vector in 3-D space with the following:
- The representation of a vector should be three doubles giving the magnitudes in the x, y, and z directions.
- Write a default constructor, a constructor with 3 doubles as arguments a copy constructor and a destructor.
- Use operator overloading to implement:
- Addition and subtraction of vectors
- Add or subtract the corresponding elements of the array.
- Assignment operation
- Assign values of a vector object to another vector object.
- Inner product of two vectors
- If vector $1, \mathrm{v} 1=[\mathrm{abc}]$ and vector $2, \mathrm{v} 2=[\mathrm{d} \mathrm{e} \mathrm{f}$, then the inner product v1.v2 $=a^{\star} d+b^{\star} c+c^{\star} d$.
- Scalar-vector multiplication
- If k is a scalar and $v=[a b c]$ is a vector, then $k^{*} v=\left[k^{*} a k^{*} b k^{*} c\right]$.
- Printing a vector to stdout.

