CSE 333

Lecture 1 - Intro, C refresher

Hal Perkins
Department of Computer Science & Engineering
University of Washington

CSE333 lect intro // 01-06-14 // perkins

Welcome!

Today’s goals:
- Introductions
- course syllabus

- quick C refresher

CSE333 lect intro // 01-06-14 // perkins

INntroductions

Us (cse333-staff@cs)
- Hal Perkins (Instructor)
- Sunjay Cauligi (TA)

- Gortney Corbin (TA)

- Renshu Gu

- Jidiang Yan

Most important: You!!

CSE333 lect intro // 01-06-14 // perkins

Welcome!

Today’s goals:
- Introductions
- course syllabus

- quick C refresher

CSE333 lect intro // 01-06-14 // perkins

Course map: 100,000 foot view

Java
application

Cstandard I|brary C++ STL/ boost/
standard library
OS / app interface

(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

CSE333 lect intro // 01-06-14 // perkins

Systems programming

The programming skills, engineering discipline, and
Knowledge you need to build a system

- programming: C / C++
- discipline: testing, debugging, performance analysis

- knowledge: long list of interesting topics

» concurrency, OS interfaces and semantics, techniques for
consistent data management, distributed systems algorithms, ...

most important: a deep understanding of the “layer below”

* quiz: Is data safely on disk after a “write()” system call returns?

CSE333 lect intro // 01-06-14 // perkins

Discipline?!”

Cultivate good habits, encourage clean code
coding style conventions
unit testing, code coverage testing, regression testing
documentation (code comments, design docs)

code reviews

Will take you a lifetime to learn

- but oh-so-important, especially for systems code

» avoid write-once, read-never code

CSE333 lect intro // 01-06-14 // perki

What you will be doing

Attending lectures and sections

- lecture: ~27 of them, MWEF here

- sections; ~10 of them, Thu 8:30 (sorry), 9:30, 10:30, not here
- Take notes!!ll Don’t expect everything to be on the web
Doing programming projects

- 4 of them, successively building on each other, plus a warmup
- includes C, C++; file system, network

Doing programming exercises

- one per lecture, due before the next lecture begins

- coarse-grained grading (0,1,2,3)

Midterm and a final exam (your instructor is a traditionalist)

CSE333 lect intro // 01-06-14 // perkins

Midterm Scheduling

Best date given our project timetable is Fri. Feb. 14
» But may conflict with other classes
How many people are also taking CSE 3417
How many in CSE 3327 Which one (9:307 12:307)

Other 10:30 or 12:30 classes? (particularly if it involves a long
hike)

Other classes with exams on Fri. Feb. 147

» What about Mon. Feb. 10?

CSE333 lect intro // 01-06-14 // perki

Deadlines & Conduct

Need to get things done on time (very hard to catch up)
- Programming assignments: 4 late days, 2 max per project

- Exercises: no late days (max benefit that way)

Academic Integrity (details on the web; read them)

- | trust you implicitly; | will follow up If that trust is violated

- The rules boll down to: don’t attempt to gain credit for
something you didn’t do, and don’t help others do so

- That does not mean suffer in silence - you have colleagues,
instructor, TAsS - work with them; learn from each other!

CSE333 lect intro // 01-06-14 // perki

Course calendar

Linked off of the course web page
- master schedule for the class
- links to:
lecture slides
code discussed in lectures
assignments, exercises (including due dates)
optional “self-exercise” solutions

various C/C++/Linux resources

CSE333 lect intro // 01-06-14 // perkins

Welcome!

Today’s goals:
- Introductions
- course syllabus

- quick C refresher

CSE333 lect intro // 01-06-14 // perkins

SECOND EDITION
C THE

B\

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

Created in 1972 by Dennis Ritchie

- designed for creating system software
- portable across machine architectures
- most recently updated in 1999 (C99) and 2011 (C11)
Characteristics

- low-level, smaller standard library than Java

- procedural (not object-oriented)

- typed but unsafe; incorrect programs can fail spectacularly

CSE333 lect intro // 01-06-14 // perkins

C workflow

execute,
debug,
profile,

source
files
(.c, .h)

Editor -0) 1

(emacs, Vi) compile executable Process

or IDE

(eclipse) : .
'WT e

statically linked shared
libraries libraries

CSE333 lect intro // 01-06-14 // perkins

-rom C to machine code

int dosum(int i, int j) {
return i+j;

C source file
(dosum.c) }

C compiler (gcc -S)

|

zebp
zesp, 3%ebp

assembly source file
12 (%ebp), %eax

(dOSUﬂlS) 8(%ebp), %eax
zebp

N
DD *

' 89 e5 8b 45
machine code — assembler (as)

(dosum.o)

Oc 03 45 08
5d c3

. CSE333 lect intro // 01-06-14 // perkins

Skipping assembly language

Most C compilers generate .o files (machine code) directly

- l.e., without actually saving the readable .s assembly file

[dosum. CJ—P gcc -S —{dosum. s}—b as dosum. o}

CSE333 lect intro // 01-06-14 // perkins

Multi-file C programs

int dosum(int i, int j) { this “prototype” of
return i+j; dosum() tells gcc
about the types of
dosum’s arguments
and its return value

C source file
(dosum.c) }

-
#include <stdio.h>

C source file &int dosum(int i, int j

(Sumnum.C) int main(int argc Qqr **argv) {
printf("%d\n", 2)); dosum() is

return 0; > implemented

} in dosum.c
N

CSE333 lect intro // 01-06-14 // perkins

Multi-file C programs

Cisolfceiengy 11t dosum(int 1, int 3) |
(d) return 1+j;
oSum.c }

why do we need
this #include?

-

#include <stdio. h}

C source file int dosum(int i, int j);

(sumnum.c) g (int argc, char **argv) {

@o e dosum(1,2)); where is the

—» implementation
of printf?

CSE333 lect intro // 01-06-14 // perkins

Compiling multi-file programs

Multiple object files are linked to produce an executable
- standard libraries (libc, crtl, ...) are usually also linked in

- alibrary Is just a pre-assembled collection of .o files

[dosum. c}—b JCCEC —P[dosum. o}\
sumnum.c gcc -C = sumnum.o / T
[llbrarles}

- | SUmMnNnum
orgcc

(e.g., libc)

CSE333 lect intro // 01-06-14 // perkins

Object files

sumnum.o, dosum.o are object files

- each contains machine code produced by the compiler
- each might contain references to external symbols

» variables and functions not defined in the associated .c file

» €.g., Sumnum.o contains code that relies on printf() and dosum(),
but these are defined in libc.a and dosum.o, respectively

- linking resolves these external symbols while smooshing
together object files and libraries

CSE333 lect intro // 01-06-14 // perkins

Let’s dive into C itself

Things that are the same as Java
syntax for statements, control structures, function calls
types: int, double, char, long, float
type-casting syntax: float x = (float) 5 / 3;

expressions, operators, precedence

/%++_._=-|—=_==/= =<<===!=>>=&&||!
scope (local scope is within a set of { } braces)

comments: /* comment */ // comment

CSE333 lect intro // 01-06-14 // perkins

Primitive types in C

see Sizeofs.c

Iﬂteger typeS type (ggtﬁ}e{) (gztﬁi) 32 bit range

char 1 1 [0, 255]

- char, int
short int

ﬂoatlng pOlI’Tt unsigned short int
int

= ﬂoat, dOUble unsigned int

[-32768,32767]

[0, 65535]

[-214748648,
2147483647]

[0, 4294967295]

[-2147483648,
2147483647]

[-9223372036854 775808,
9223372036854775807]

approx [10-38, 1038]

long int

modifiers

long long int

short [int] foat

double
IOng [int, dOUble] long double

pointer

0|]| BB BAIDN]IDD
o | h]J]OOW]|]OOW| DA BAIDN]IDND

approx [10-308 1(308]

-
N
N
(0))

I
(o)

[0, 4294967295]

signed [char, int]

unsigned [char, int]

CSE333 lect intro // 01-06-14 // perkins

C99 extended integer types

Solves the conundrum of “how big is a long int?”

#include <stdint.h>

void foo(void) {
int8 t w; // exactly 8 bits, signed
intlé_t x; // exactly 16 bits, signed
int32 t y; // exactly 32 bits, signed
int64 t z; // exactly 64 bits, signed

uint8 t a; // exactly 8 bits, unsigned
.etc.

CSE333 lect intro // 01-06-14 // perkins

Similar to Java...

- variables

» C99: don’t have to declare at start of a function or block

» need not be initialized before use (gcc -Wall will warn)

p
#include <stdio.h>

int main(int argc, char **argv) {
int x, y = 5; // note x is uninitialized!
long z = x+y;

printf("z is '%1d'\n", z); // what’s printed?
varscope.c {

int y = 10;

printf("y is '%d'\n", y);
}
IRERWR=t20IHNY O Heo ks nire 99
printf("y is '%3d', w is '%d'\n", y, w);
return O;

Similar to Java...

const
- a qualifier that indicates the variable’s value cannot change
- compiler will issue an If you try to violate this

- why is this qualifier useful?

2
#include <stdio.h>

int main(int argc, char **argv) {

const double MAX GPA = 4.0;
COﬂSty.C
printf ("MAX GPA: %g\n", MAX GPA);
MAX GPA = 5.0; // illegal!
return 0O;

}
\ J

CSE333 lect intro // 01-06-14 // perkins

Similar to Java...

for loops

- C99: can declare variables in the loop header

if/else, while, and do/while loops

- C99: bool type supported, with #include <stdbool.h>

- any type can be used; 0 means false, everything else true

4 A
int i;

for (1 = 0; i < 100; i++) {
if (1 % 10 == 0) {
printf("i: %d\n", 1i);

CSE333 lect intro // 01-06-14 // perkins

Similar to Java...

parameters / return value

- C always passes
arguments by value

- “pointers”
lets you pass by reference
more on these soon
least intuitive part of C

very dangerous part of G

pointy.c

-
void add _pbv(int c¢) {

c += 10;
printf("pbv c: %d\n", c);
}

void add_pbr(int *c) {

*¢ += 10;

printf("pbr *c: %d\n", *c);
}

int main(int argc, char **argv) {
int x = 1;

printf("x: %d\n", x);

add_pbv(x);
printf("x: %d\n", x);

add_pbr (&x);
printf("x: %d\n", x);

return O;

Very different than Java

arrays
- Just a bare, contiguous block of memory of the correct size
- an array of 10 ints requires 10 x 4 bytes = 40 bytes of memory
arrays have no methods, do not know their own length
- G doesn’t stop you from overstepping the end of an array!!

- many, many security bugs come from this

CSE333 lect intro // 01-06-14 // perkins

Very different than Java

strings
- array of char
- terminated by the NULL character \O’

- are not objects, have no methods; string.h has helpful utilities

\n|\O

J

CSE333 lect intro // 01-06-14 // perkins

Very different than Java

errors and exceptions

- G has no exceptions (no try / catch)

- errors are returned as integer error codes from functions
- makes error handling ugly and inelegant

crashes

- If you do something bad, you’ll end up spraying bytes around
memory, hopefully causing a “segmentation fault” and crash

objects

- there aren’t any; struct is closest feature (set of fields)

CSE333 lect intro // 01-06-14 // perkins

Very different than Java

memory management
you must to worry about this; there is no garbbage collector
local variables are allocated off of the stack
» freed when you return from the function
global and static variables are allocated in a data segment
» are freed when your program exits

you can allocate memory in the heap segment using malloc()
» you must free malloc’ed memory with freg()

» failing to free is a leak, double-freeing is an error (hopefully crash)

CSE333 lect intro // 01-06-14 // perkins

Very different than Java

Libraries you can count on
C has very few compared to most other languages
no built-in trees, hash tables, linked lists, sort , etc.

you have to write many things on your own
» particularly data structures

» error prone, tedious, hard to build efficiently and portably

this is one of the main reasons C is a much less productive
language than Java, C++, python, or others

CSE333 lect intro // 01-06-14 // perkins

-or Wednesday

Exercise 0O is due:

http://www.cs.washington.edu/education/courses/cse333/14wi/exercises/ex00.html

- (Easier: look on the calendar or homework page for the link)
Post a message on the discussion board

- Get it to keep track of new messages for you!

Fill out the office hours doodle - help us pick good times
Homework O out before class Wednesday

- Mostly logistics (get files, fiddle with files, turn in files)

- Watch for email to course mailing list (and you are already subscribed if
you are enrolled)

CSE333 lect intro // 01-06-14 // perkins

See you on Wednesday!

CSE333 lect intro // 01-06-14 // perkins

