CSE 333

Lecture 20 - intro to concurrency

Hal Perkins
Department of Computer Science & Engineering
University of Washington

)
\_4

CSEB33 lec 20 concurrenc y // 03-05-14 // Perki

ins




Administrivia (1)

HW4 due next Thursday night, 11 pm w/usual late days
» How is it going?

Section tomorrow: concurrency and pthreads

- Followed by a pthreads exercise to do over the weekend

Reminder: watch your late days! (4 max per quarter)

- We should have the “late days remaining” gradebook entry
updated in the next day or two

- Pop quiz: What happens if you turn in something late and
have no late days left?

CSEB33 lec 20 concurrenc y // 03-05-14 // Perki

ins




Administrivia (2)

Final exam is Wed. 3/19, 2:30 pm

- Topic list on web will be updated shortly if needed, but don’t
expect much to change

- Old exams on the web already
- High-level course review in sections next week

- New! Last-minute review Tue. 3/18, 4:30 pm. Location TBA,
bring questions!

CSEB33 lec 20 concurrenc y // 03-05-14 // Perkins




(Goals

Understand concurrency

- why it is useful

- why it is hard

Exposure to concurrent programming styles
- using multiple threads or multiple processes

- using asynchronous or non-blocking /O

»  “event-driven programming”

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Let’s Imagine you want to...

...build a web search engine.

- you need a Web index

» an inverted index (a map from “word” to “list of documents

containing the word”)
» probably sharded over multiple files
- ad query processor
» accepts a query composed of multiple words

» looks up each word in the index

» merges the result from each word into an overall result set

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Architecturally

iNndex
file

iINndex
file

query
processor

iNndex
file

.
.| client
'é
K 4
L4
4
K4
4
4
4
&l .
L 3 client
.’ Pl
4 -
P s”
4 ‘4
g -
‘4
4“
--------------- client
§~~~~
. “a
< ~
-~ “a
Y ~~
< ~
. ~. '
. client
ss
Y
<
<
<~
<
<
Y
S‘ \
client

CSE333 lec 20 concurrency // 03-05-14 // Perkins




A sequential Implementation

/

N
doclist Lookup(string word) ({
bucket = hash (word) ;
hitlist = file.read (bucket);
foreach hit in hitlist {

doclist.append(file.read(hit)) ;
}

return doclist;

}

main () {
while (1) {

string query words[] = GetNextQuery() ;
results = Lookup (query words[0]) ;
foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}

Display (results) ;
}

1 // Perkins




Visually

()AxondaxoN31oD

O/I Maomaau

()Aetdsta
()s3Tnsay 309sIs3jurl

O/I ¥STP

()peoax-oTTT
()dnyoorT

O/I ¥STP

()peax- o113
()dnyoorT

0/I ¥STP

()pea2x*oT1TT
()dn3ooT

O/I Maomaau

() AxondaxsN3IoD
()uteu

time

query

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Simplifying

o°¢

Nndo

P'e 0/I
™
> ¢ nad | §
D)
O
q'€ o/I
e € Ndo
5°¢ nao
Pz 0/I
AN
>z nad | §
D)
O
q'z o/1
e Z Ndo
5" T nao
P'T O/I
Q°T NdO
q'1 0/I
e 1 Ndo

query 1

time

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Simplifying

only one /0O request © Q 0 o 0
at a time is in flight ™ ™ ™ ™ ™
the CPU is idle \ 2 BT 2 B I
most of the time
ru Q 4} o ) query 3
(Q\] (Q\] N AN AN
) O -] @ -
Ay ~ Ay ~ al
@) H @) H @)
«s Q 4} o ) query 2
— — — — — \
D O D e D . , |
] ™ 3 S 3 queries don’t run until
earlier queries finish
query 1
time

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Sequentiality can be inefficient

Only one query is being processed at a time
- all other queries queue up behind the first one
The CPU is idle most of the time

- it is “blocked” waiting for I/O to complete

» disk I/O can be very, very slow
At most one |/O operation is in flight at a time

- misses opportunities to speed /O up

» separate devices in parallel, better scheduling of single device, ...

CSEB33 lec 20 concurrenc y // 03-05-14 // Perkins




What we want...concurrency

A version of the program that executes multiple tasks
simultaneously

- it could execute multiple queries at the same time
» while one is waiting for 1/0O, another can be executing on the CPU

- o, It could execute queries one at a time, but issue
10 requests against different files/disks simultaneously

» It could read from several different index files at once, processing
the |/O results as they arrive

Concurrency != parallelism

- parallelism is when multiple CPUs work simultaneously

CSE333 lec 20 concurrency // 03-05-14 // Perkins




One way to do this

Use multiple threads or processes

- as a query arrives, fork a new thread (or process) to handle it

» the thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

» the thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on 1/0O

- the OS context switches between threads / processes
» while one is blocked on I/O, another can use the CPU

» multiple threads’ I/O requests can be issued at once

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Multithreaded pseudocode

main () {
while (1) {
string query words[] = GetNextQuery()

ForkThread (ProcessQuery()) ;

}

}
- J

doclist Lookup (string word) ({
bucket = hash (word) ;
hitlist = file.read (bucket);
foreach hit in hitlist
doclist.append(file.read (hit)) ;
return doclist;

}

ProcessQuery () {
results = Lookup (query words[O0]);
foreach word in query[l..n] {
results = results.intersect (Lookup (word)) ;

}
Display (results) ;

}

I\ Ay //03-05-14 // Perkins




ly

visua

Multithreaded

°2°¢ NdO

pP*€ O/I

°9°¢ NdO

O0*¢ NdO

q-€ 0/I

P°C O/I

Q¢ NdO

e*¢ NdO

query 3

q:Z 0O/I

e*Z NdO

query 2

©°T Ndd
P'T O/I
°0°T1 Ndd
9T O/I
e T Ndd

-

)

-

O

time

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Whither threads

Advantages
- you (mostly) write sequential-looking code

- if you have multiple CPUs / cores, threads can run in parallel

Disadvantages

- If your threads share data, need locks or other synchronization
» this is very bug-prone and difficult to debug

- threads can introduce overhead
» lock contention, context switch overhead, and other issues

- need language support for threads

CSE333 lec 20 concurrency // 03-05-14 // Perkins




One alternative

Fork processes instead of threads

- advantages:

» NO shared memory between processes, so No need to worry about
concurrent accesses to shared variables / data structures

» NoO need for language support; OS provides “fork”
- disadvantages:
» more overhead than threads to create, context switch

» cannot easily share memory between processes, so typically share
through the file system

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Another alternative

Use asynchronous or non-blocking /O
- your program begins processing a query

» when your program needs to read data to make further progress, it
registers interest in the data with the OS, then switches to a
different query

» the OS handles the details of issuing the read on the disk, or waiting
for data from the console (or other devices, like the network)

» when data becomes available, the OS lets your program know

- your program (almost never) blocks on /O

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Event-driven programming

Your program is structured as an event-loop

4 N

void dispatch (task, event) {
switch (task.state) {
case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]);
task.state = READING FROM INDEX;
return;
case READING FROM INDEX:
.etc.

}
}

while (1) {
event = 0S.GetNextEvent( ),
task = lookup (event) ;
dispatch(task, event);

}
\

_/
CSE333Tec 20 concurrency /7 03-05-14 // Perkins




Asynchronous, event-driven

pP*€ O/I

q*¢€ 0O/I

time

°°¢ NdO
'€ Ndd
°°7 Ndd
°°T Ndd
Pz O/I
P'T O/I| % ¢ a5
0*¢ NdoO
O°*T NdO
q-z 0/I
q°1 0/I
e’z Ndd
e'T Ndd

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Non-blocking vs. asynchronous

Non-blocking I/0O (network, console)
- your program enables non-blocking /O on its fd’s
- your program issues read( ), write( ) system calls
» if the read/write would block, the system call returns immediately
- program can ask the OS which fd’s are readable/writeable

» program can choose to block while no fds are ready

Asynchronous I/0 (disk)
- program tells the OS to begin reading / writing

» the “begin_read” or “begin_write” returns immediately

» when the I/0O completes, OS delivers an event to the program

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Why the difference”

Non-blocking I/O is for networks
- according to Linux, the disk never blocks your program
» it just delays it
- but, reading from the network can truly block your program
» aremote computer may wait arbitrarily long before sending data
Asynchronous |/O is for files

- primarily used to hide disk latency
» asynchronous I/0O system calls are messy and complicated :(

» instead, typically use a threadpool to emulate asynchronous 1/0O

CSE333 lec 20 concurrency // 03-05-14 // Perkins




Whither events”?

Advantages
- don’t have to worry about locks and “race conditions”

- for some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

» one event handler for each Ul event

Disadvantages

- can lead to very complex structure for programs that do lots of
disk and network /O

» sequential code gets broken up into a jumble of small event handlers

» you have to package up all task state between handlers

CSE333 lec 20 concurrency // 03-05-14 // Perkins




One way to think about it

Threaded code:

- each thread executes its task sequentially, and per-task state
IS naturally stored in the thread’s stack

- OS and thread scheduler switch between threads for you
Event-driven code:

- *you™ are the scheduler

- you have to bundle up task state into continuations; tasks do
not have their own stacks

CSE333 lec 20 concurrency // 03-05-14 // Perkins




See you on Friday!

CSE333 lec 20 concurrency // 03-05-14 // Perkins




