
CSE333 lec 22 wrapup // 03-14-14 // Perkins

CSE 333
Lecture 22 -- wrapup

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Administrivia

HW4 due last night

- Usual late days (up to 2) apply if you still have any left

Final exam Wednesday, 2:30, here

- Last-minute Q&A Tue., 4:30, EEB 045

- Topic list and old exams on the web

‣ Anything all quarter is possible, but probably biased toward 2nd half

- Course overview in class today

CSE333 lec 22 wrapup // 03-14-14 // Perkins

So what have we been doing
for the last 10 weeks?

?

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Course goals

Explore the gap between

- Intro: the computer is a magic appliance that runs programs

- CSE 351: the computer is a stupid appliance that executes
really, really simple instructions

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Course map: 100,000 foot view

hardware

operating system
HW/SW interface
(x86 + devices)

CPU memory storage network
GPU clock audio radio peripherals

OS / app interface
(system calls)

C standard library
(glibc)

C application

C++ STL / boost /
standard library

C++ application

JRE

Java
application

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Goals

Skills

- Programming closer to the hardware: C/C++

- Disciplined design, testing, debugging

Knowledge

- OS interface and semantics, languages, some networking

- A deep(er) understanding of “the layer below”

‣ quiz: when is the data safely on disk after a write? Actually received
over the network? How many copies are made along the way?

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Main topics

C Programming, tools, and workflow

Memory management

System interfaces and services (files, etc.)

C++ : the 800-lb gorilla of programming languages

- “better C” + classes + STL + smart pointers + ...

Networking basics: TCP/IP, sockets, ...

Drilling deeper...

CSE333 lec 22 wrapup // 03-14-14 // Perkins

The C/C++ Ecosystem

System layers: C/C++, libraries, operating system

Building programs

- cpp: #include, #ifndef, and all that

- compiler (cc1): source -> .o

- loader (ld): .o + libraries -> executable

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Program
execution

What’s a process?

- Address space

- Thread(s) of execution

- Environment (arguments,
open files, ...)

0x00000000

0xFFFFFFFF
OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

CSE333 lec 22 wrapup // 03-14-14 // Perkins

C language

Structure of C programs

- Header files and implementations; declaration vs definition

- Internal vs external linkage

- Standard types and operators (scalars including things like uint64_t,
structs, arrays, typedef, etc.)

- Functions: defining, using, execution model

- Standard libraries and data structures (strings, streams, ...)

‣ C standard library, system calls, and how they are connected

- Handling errors in a language without exception handling

‣ return codes, errno, and friends

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Memory

Object scope and lifetime (static, automatic, dynamic)

Pointers and associated operators (&, *, ->, [])

- Using pointers for call-by-reference as well as linked data

Dynamic memory allocation (malloc/free; new/delete)

- Who is responsible for dynamic memory & what happens if
not done right (dangling pointers, memory leaks, ...)

Tools: debuggers (gdb), monitors (valgrind), ...

- Most important tool: thinking(!)

CSE333 lec 22 wrapup // 03-14-14 // Perkins

C++ (and C++11)

A “better C”

- Type-safe streams and memory mgmt (new, delete, delete[]), etc.

References and const

C with classes (and objects)

- Constructors, copy constructor, destructor, assignment

Subclasses and inheritance

- Dynamic vs static dispatch & why it matters, virtual functions, vtables

- Pure virtual functions and abstract classes

C++ casts - what are they and why so many (compared to C)?

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Templates, STL, and smart ptrs

Templates: parameterized classes and functions

- How the idea is similar to Java generics and what’s different

- How C++ implements templates (expansion)

STL: basic vector, list, map containers and iterators

- Copy semantics

Smart pointers: unique, shared, and weak

- Reference counting, resource management

Using class heirarchies with STL

- Pointer vs value semantics, assignment slicing

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Networking

Layered protocol model, particularly TCP and IP

- What they do, how they are related, how they differ

Network addresing and protocols: IP addresses, DNS,
IPv4, IPv6, ports

Application protocols: where HTTP fits in the scheme

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Network Programming

Client side

1. get IP address / port

2. create socket

3. connect socket to server

4. read / write data

5. close socket

Server side

1. get IP address / port

2. create socket

3. bind socket to address / port

4. indicate that socket is a listener

5. accept connection from client

6. read / write data

7. close socket

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Concurrency
Why?

- Better resource utilization

- Better throughput

Processes

- Heavyweight, isolated, created by cloning: fork()

Threads

- Lightweight, share address space, pthreads

Synchronization (particularly threads)

- What are the main issues

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Processes vs threads on one slide

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

parent child
fork

SP

PC

SP

PC

OS kernel [protected]

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

stackparent

stackchild

SPparent

SPchild

PCchild

PCparent

CSE333 lec 22 wrapup // 03-14-14 // Perkins

Phew! That’s it!!

But that’s a lot!!!

Studying for the exam

- Review lecture slides, assignments, exercises

- Try some of the end-of-lecture problems for practice

- Look at old exams and topic list on the web

‣ Try the old exam questions first, before looking at answers

- Study groups! Ask questions / trade ideas on the discussion
board! Ask course staff questions

- The goal is learning and mastery

CSE333 lec 22 wrapup // 03-14-14 // Perkins

That’s it (almost)

Congratulations and good luck on the exam!!

And a big thanks to Sunjay, Cortney, Renshu & Johnny

- This doesn’t happen without great help

You’ve learned a lot – go out and build great things!!!

CSE333 lec 22 wrapup // 03-14-14 // Perkins

One more thing...

Course evals

- Constructive feedback (positive we hope, but negative when
called for) is what helps us get better

See you Wednesday!

