
CSE333 make // 01-17-14 // Perkins

CSE 333
Interlude - make and build tools

Hal Perkins

Department of Computer Science & Engineering

University of Washington

CSE333 make // 01-17-14 // Perkins

make

make is a classic program for controlling what gets (re)
compiled and how. Many other such programs exist (e.g.,
ant, maven, “projects” in IDEs, ...)
make has tons of fancy features, but only two basic
ideas:

1. Scripts for executing commands
2. Dependencies for avoiding unnecessary work

To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts...

CSE333 make // 01-17-14 // Perkins

Building software

 Programmers spend a lot of time “building” (creating programs

from source code)
Programs they write
Programs other people write

	 Programmers automate repetitive tasks. Trivial example:
gcc -Wall -g -std=gnu99 -o widget foo.c bar.c baz.c

	 If you:
Retype this every time: “shame, shame”
Use up-arrow or history: “shame” (retype after logout)
Have an alias or bash script: “good-thinkin”
Have a Makefile: you’re ahead of us

CSE333 make // 01-17-14 // Perkins

“Real” build process
On larger projects, you can’t or don’t want to have one big (set of)
command(s) that redoes everything every time you change anything
1. If gcc didn’t combine steps behind your back, you’d need to

preprocess and compile each file, then run the linker
2. If another program (e.g., sed) created some C files, you would need

an “earlier” step
3. If you have other outputs for the same source files (e.g., javadoc), it’s

unpleasant to type the source file names multiple times
4. If you want to distribute source code to be built by other users, you

don’t want to explain the build logic to them
5. If you have 105 to 107 lines of source code, you don’t want to

recompile them all every time you change something
A simple script handles 1–4 (use a variable for filenames for 3), but 5 is
trickier

CSE333 make // 01-17-14 // Perkins

Recompilation management

The “theory” behind avoiding unnecessary compilation is
a “dependency dag” (directed, acyclic graph):
To create a target t, you need sources s1,s2, …,sn and a
command c (that directly or indirectly uses the sources)
If t is newer than every source (file-modification times),
assume there is no reason to rebuild it
Recursive building: If some source si is itself a target for
some other sources, see if it needs to be rebuilt…
Cycles “make no sense”

CSE333 make // 01-17-14 // Perkins

Theory applied to C

Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h files, recursively/transitively)
An archive (library, .a) depends on included .o files
Creating an executable (“linking”) depends on .o files
and archives (-L. -lfoo to get libfoo.a from current dir)
So if one .c file changes, just need to recreate one .o
file, maybe a library, and relink
If a header file changes, may need to rebuild more
And there are many more possibilities

CSE333 make // 01-17-14 // Perkins

make basics
A makefile contains a bunch of triples

target:	sources
	 	 command

Example:
foo.o: 	foo.c foo.h bar.h
	 	 gcc -Wall -o foo.o -c foo.c

Syntax gotchas:
The colon after the target is required
Command lines must start with a TAB NOT SPACES
You can actually have multiple commands (executed in order); if one
command spans lines you must end the previous line with \
Which shell-language interprets the commands? (Typically bash; to be
sure, set the SHELL variable in your makefile.)

TAB

CSE333 make // 01-17-14 // Perkins

Using make
At the prompt:

prompt% make -f nameOfMakefile aTarget
Defaults:
If no -f specified, use a file named Makefile
If not target specified, use the first one in the file

Open source usage: You can download a tarball, extract it, type
make (four characters) and everything should work
Actually, there’s typically a “configure” step too, for finding things
like “where is the compiler” that generates the Makefile (but we
won’t get into that)
- The mantra: ./configure; make; make install

CSE333 make // 01-17-14 // Perkins

Precise review
A Makefile has a bunch of these:

target: source_1 ... source_n
	 	 shell_command

Running make target does this:
For each source, if it is a target in the Makefile, process it
recursively
Then:
- If some source does not exist, error
- If some source is newer than the target (or target does not

exist), run shell_command (presumably updates target, but that
is up to you; shell_command can do anything)

CSE333 make // 01-17-14 // Perkins

make variables
You can define variables in a Makefile. Example:

CC = gcc
CFLAGS = -Wall -std=gnu99
foo.o: foo.c foo.h bar.h
	 	 $(CC) $(CFLAGS) -c foo.c -o foo.o

Why?
Easy to change things
Can change on make command line (CFLAGS=g)

CSE333 make // 01-17-14 // Perkins

More variables
It’s also common to use variables to hold list of filenames:

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)
	 	 gcc -o widget $(OBJFILES)
clean:
	 	 rm $(OBJFILES) widget

clean is a convention: remove any generated files, to “start over”
and have just the source
It’s “funny” because the target doesn’t exist and there are no
sources, but that’s okay:
- If target doesn’t exist, it must be “remade” so run the

commands
- These “phony” targets have several uses, another is an “all”

target....

CSE333 make // 01-17-14 // Perkins

“all” example
all: prog B.class someLib.a # notice no commands this time
prog: 	 foo.o bar.o main.o
	 	 gcc -o prog foo.o bar.o main.o
B.class: B.java
	 	 javac B.java

someLib.a: foo.o baz.o
	 	 ar r foo.o baz.o
foo.o: foo.c foo.h header1.h header2.h
	 	 gcc -c -Wall foo.c

...(similar targets for bar.o, main.o, baz.o) ...

CSE333 make // 01-17-14 // Perkins

Revenge of the funny characters
Lots - see the documentation
- $@ for target
- $^ for all sources
- $< for left-most source
- …

Examples:
	 widget: foo.o bar.o
	 	 $(CC) $(CFLAGS) -o $@ $^
	 foo.o: foo.c foo.h bar.h
	 	 $(CC) $(CFLAGS) -c $<

CSE333 make // 01-17-14 // Perkins

And more…
There are a lot of “built-in” rules. E.g., make just “knows” to create
foo.o by calling $(CC) $(CFLAGS) on foo.c. (Opinion: may be more
confusing than helpful. YMMV)
There are “suffix” rules and “pattern” rules. Example:

%.class: %.java
	 	 javac $< 	 # Note we need $< here

Remember you can put any shell command on the command-line,
even whole scripts
You can repeat target names to add more dependencies (useful
with automatic dependency generation)

Often this stuff is more useful for reading makefiles than writing
your own (until some day…)

